PC-SeriesTM Precision Linear Actuators Optimize Your Machine and Save Energy With Reliable, High Performance, Compact Actuators

www.thomsonlinear.com

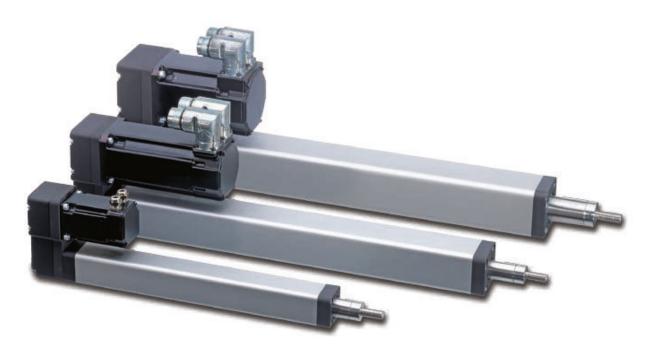
BIBUS s.r.o. +420 547 125 300 www.bibus.cz

Make the Change to Electric

Enjoy superior performance and save time and energy

Next generation machines and equipment need to be more compact while delivering higher performance and more flexibility. Making the change from pneumatic cylinders to electric actuators can simplify your design and deliver savings at the same time.

Superior Performance


- Higher power density
- More accuracy
- Longer stroke lengths
- Quieter operation
- Side load capability

Time and Energy Savings

- Reduced energy costs
- Reduced setup and changeover time
- Fewer components than a pneumatic system
- No air leaks
- No compressor maintenance

Estimate Your Annual Energy Savings

Visit www.thomsonlinear.com/pc_calc to see how much you could save!

Electric Actuators vs. Pneumatic Cylinders

Designing with electric actuators instead of pneumatic cylinders results in fewer components, better performance and a lower total cost of ownership.

Side-by-Side Comparison: Load Testing Equipment		
	Electric Design	Pneumatic Design
 Actuator / cylinder Cables Control box Servo valve Regulator Air hoses Valve block Linear scale Compressor Other equipment 	Space required: ~ 0.4 m³	<image/>
Controllability	$\star\star\star\star$	**
Load	$\star\star\star$	$\star\star$
Accuracy	$\star\star\star\star$	*
Speed	***	$\star\star\star\star$
Maintenance	$\star \star \star$	*
Noise	$\star \star \star$	$\star\star$
Installed Cost	★★	$\star \star \star \star$
Operating Cost	$\star \star \star \star$	\star
Total Cost	$\star\star\star$	**
★ Poor	Eq	uipment shown performs the same operation and is shown in the same sca

 $\star \star \star \star \star$ Excellent

Fair Good

www.thomsonlinear.com

Build Flexibility into Your Processing Application

The complexities of many processing applications, including sanitary washdown requirements and mixed product manufacturing lines, are easily accommodated by the Thomson PC-Series[™] precision linear actuators where IP65 rating is standard

Form, Fill and Seal Equipment

Filling heads move up and down rapidly and repeatedly on form, fill, and seal equipment. Electric actuators provide an advantage with higher precision and repeatability than a pneumatic solution.

Grading

Sorting arms and pushers move to shift product into distinct bins in grading applications, often a consolidation point from many production lines. The predictable life of electric actuators ensures that the line will stay up as intended between maintenance cycles.

Converting and Container Manufacturing

Molding, can and box manufacturing equipment often require several axes to move and operate in confined spaces in close proximity to each other. By using electric actuators instead of pneumatic cylinders you can save space and installation time while improving the accuracy of the process.

Inspection

Testing tightening torque and checking seals is essential to overall product quality. Electric actuators provide superior accuracy and repeatability at this critical step.

www.thomsonlinear.com

Accelerate Your Packaging or Handling Application

Packaging and handling processes require speed to keep up with ever-increasing flow rates from manufacturing lines. Higher speed does not have to mean higher energy consumption. Choosing Thomson PC-Series[™] electromechanical linear actuators can greatly reduce energy consumption due to the fact that they use energy on demand.

Marking and Printing

Product quality and traceability are growing in importance as regulations become more strict. Consistently placing the right label on the right package in the right position is more critical than ever. In addition, electric actuators are an ideal choice for the end of the manufacturing line, where labels and printing often take place but no air lines may be present.

Secondary Packaging

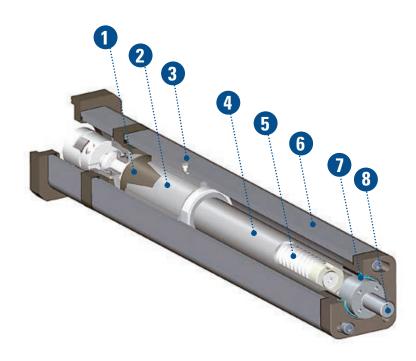
Automation is increasing at the end of the line, where products are wrapped, cartoned, strapped, banded, and palletized for shipment. The higher load capability of electric actuators enables more compact machine designs that take up less floor space.

Conveying, Sorting and Pick and Place

Ensuring that the product is at the right place at the right time is an essential part of running an automated manufacturing line, but the product coming down the line can vary. When requirements change, electric actuators allow you to change the end stop and fence positions on your line quickly with a program change, instead of a redesign and cylinder change.

Automated Storage and Retrieval

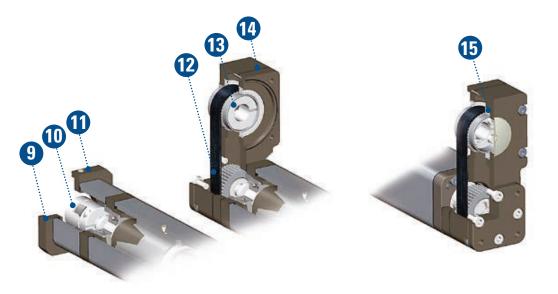
High duty cycles and harsh environments are common in automated storage and retrieval systems. Reduce maintenance needs and downtime while consuming less energy when you choose electric actuators instead of pneumatics.


www.thomsonlinear.com

BIBUS s.r.o. +420 547 125 300 www.bibus.cz

The PC-Series[™] – Designed to Deliver Value

The design of a PC-Series[™] precision linear actuator delivers extended life, high repeatability, and quiet operation. In addition, it requires minimal maintenance and resists corrosion in harsh environments.



	Feature	Benefit	
1	High precision ball nut	High repeatability and positioning accuracy Smooth, quiet operation	
2	Ball nut carrier (US patent pending)	High side load capability Reduced noise Built in anti-rotation of rod end	
3	Single point lubrication	Quick and easy maintenance	
4	Stainless steel extension tube	Suitable for heavy loads and harsh environments	
5	Large diameter ball screw	High power density and long life	
6	Smooth exterior profile	No collection points during washdown	
7	Extension tube seal	IP 65 rating suitable for harsh environments	
8	Stainless steel male rod adapter	Corrosion resistance Simple mounting of ISO standard accessories	

RediMount[™] – Designed for Flexibility and Speed

The RediMount[™] system is designed for seamless motor installation in less than five minutes. It accommodates a wide range of motor types and sizes. Motor to actuator alignment is guaranteed, ensuring a trouble-free connection and maximum system performance.

	Feature	Benefit
9	Thomson RediMount [™] motor flange Mounting in less than five minutes Pre-engineered to mount to more than 600 motors	
10	Large, flexible coupling	High torque
11	Sealing plug	IP65 protection
12	Extra-wide synchronous belt	High thrust loads
13	Clamping element	Plug and play motor assembly
14	Large housing	Accommodates large frame motors
15	Straddle mounted pulley bearings	No radial load on motor shaft

RediMount™ Motor Mounting Steps

Insert motor shaft into coupling

Tighten motor mounting screws

Tighten motor coupling screws and install sealing plug

Save on Design, Installation and Operating Time

The Thomson PC-Series[™] has been designed and built to save you time at every step, from selecting your actuator all the way through reducing the time required to maintain it.

Easy to Size & Select

- Size and select your PC-Series[™] actuator in less than 15 minutes using online selection tools
- Download configurable 3D CAD models
- Customize your solution (length, motor orientation, mounting adapters and screw leads)

Quick and Reliable Installation

- Install in less than 5 minutes with the Thomson RediMount[™] motor mounting system
- Use your own motor! RediMount is preengineered for more than 600 different motor types and sizes
- Reduce time spent aligning the actuator and motor with the RediMount pre-aligned solution
- Easily upgrade your machine from pneumatics utilizing the PC- Series ISO standard mounting interfaces

Reduced Maintenance

- Quick and effective washdowns due to streamlined profile and IP65 rating
- Quickly prepare actuator for lubrication by advancing to fully retracted position
- Corrosion resistant throughout
- Longer life due to high power density and ability to compensate for system misalignment

felest your requirements below. The list of matching products will update with	and dick.
V Perfermance Characteristics: Operational Speca	18 Matches General Station
Reachwang Spando mm/s (m/s) (mk)2 Ø 400 417 0533 1643 Reachwang Rocks Length Requireds mm (m) 000 1200	A A A A A A A A A A A A A A A A A A A
Pastware Card (Fx): H (Ba) Card Card	ECHERATOR ECHERATE ECHERATE
Activator Rechanical Characteristics Profile Size (iv x b): mm (in) D 24 x 35 D 3 x 15	Figure appear for the first 12 methods

Online selection tool

The RediMount system makes motor mounting fast and easy

Designed to withstand the harshest conditions

Product Family Overview

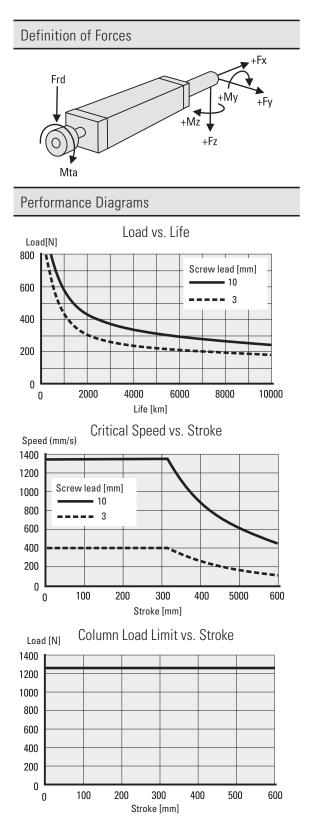

The PC-Series[™] is available in three sizes (PC25, PC32 and PC40) and two styles (inline and parallel).

	PC25	PC32	PC40
Screw Type	ball screw	ball screw	ball screw
Max. Load (Fx) [N]	1250	3200	6000
Max. Stroke [mm]	600	1200	1200
Max. Speed [m/s]	1.33	1.00	1.66
Profile Size [mm]	34×34	45 × 45	55 × 55
Screw Diameter [mm]	10	12	20
Screw Lead [mm]	3, 10	4, 10	5, 10, 20
Protection Class [mm]	IP65	IP65	IP65

Accessories

A complete line of accessories is available – including ISO compatible actuator mounting options, extension tube adapters and limit sensors. See pages 16 - 21.

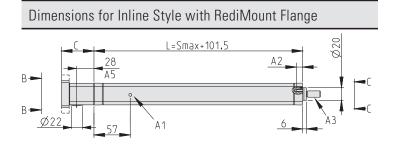
Specifications - PC25

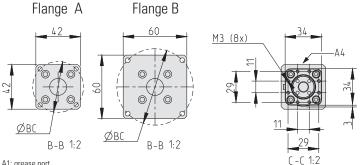


Standard Features and Benefits

- Compact, robust and reliable
- Stroke up to 600 mm
- Load up to 1250 N
- Speed up to 1.33 m/s
- Stainless steel extension tube
- IP65 as standard
- · Mounting accessories according to pneumatic ISO standard

General Specifications		
Parameter PC25		
Profile size (w \times h) [mm] 34 \times 34		
Type of screw	ball screw	
Protection class	IP65	
Lubrication one point lubrication of ball screv		


Performance Specifications		
Parameter		PC25
Stroke length (S max), maximum	[mm]	600
Linear speed, maximum	[m/s]	1.33
Acceleration, maximum	[m/s ²]	10
Repeatability	[± mm]	0.01
Input speed, maximum	[rpm]	8000
Operation temperature limits	[°C]	-20 - +70
Dynamic load (Fx), maximum	[N]	1250
Dynamic load (Fy), maximum	[N]	20
Dynamic load (Fz), maximum	[N]	20
Dynamic load torque (Mz, My), maximum	[Nm]	10
Screw versions, diameter (d0) / lead (p)	[mm]	10/03, 10/10
Drive shaft force (Frd), maximum	[N]	100
Input torque, maximum (RediMount models)	[Nm]	2.3
Drive shaft torque (Mta), maximum	[Nm]	4.0



Dimensions - PC25

Dimensions Projection **METRIC** \Box

Bell House Length (C)		
Motor shaft length [mm] C [mm]		
19 - 24	52	
24 - 29	57	
29 - 34	62	
34 - 39	67	

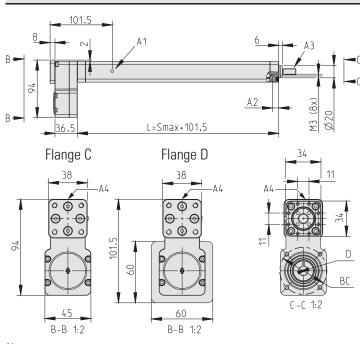
RediMount Flange Motor Dimensions Compatibility		
Motor data	Flange A [mm] Flange B [mm]	
Bolt circle diameter (BC)	43.8 - 48 48 - 72	
Shaft diameter	5 - 11	
Shaft length	19 -	- 39
Pilot diameter	16 - 36	16 - 54
Pilot length max. 4		x. 4

Weight of Unit [kg]

0.543 + (S [mm] × 0.0021)

Dimensions	Projection
METRIC	\bigcirc

RediMount Flange Motor Dimensions Compatibility		
Motor data	Flange C (mm) Flange D (mm	
Bolt circle diameter (BC)	25 - 51	51 - 72
Shaft diameter	5 - 10	
Shaft length	13 - 35	
Pilot diameter	16 - 39 16 - 54	
Pilot length max. 4		x. 4
Motor square/diameter	max. 66.5	
Weight of Unit [kg]		


0.778 + (S [mm] × 0.0021)

A1: grease port

A2: M3 thread, max. depth 10 mm.

A3: male threaded rod end shown, see ordering key and accessories for information on all available ends. A4: side of cover tube for mounting of sensors. A5: distance to center of coupling tightening hole.

Dimensions for Parallel Style with RediMount Motor Flange

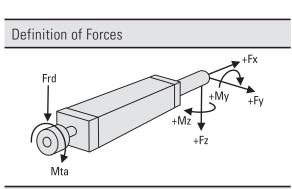
A1: grease port A2: M3 thread, max. depth 10 mm.

A3: male threaded rod end shown, see ordering key and accessories for information on all available ends.

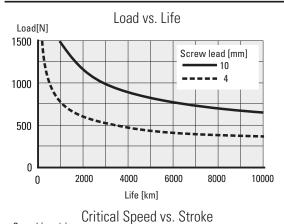
A4: side of cover tube for mounting of sensors

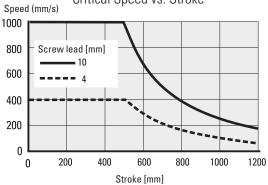
www.thomsonlinear.com

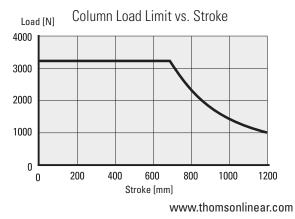
Specifications - PC32



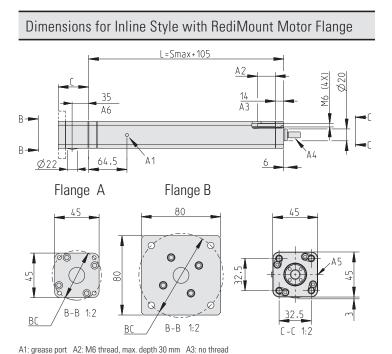
Standard Features and Benefits


- Compact, robust and reliable
- Stroke up to 1200 mm
- Load up to 3200 N
- Speed up to 1 m/s
- Stainless steel extension tube
- IP65 as standard
- Mounting accessories according to pneumatic ISO standard


General Specifications		
Parameter PC32		
Profile size (w \times h) [mm] 45 \times 45		
Type of screw	ball screw	
Protection class	IP65	
Lubrication one point lubrication of ball screw		


Performance Specifications		
Parameter		PC32
Stroke length (S max), maximum	[mm]	1200
Linear speed, maximum	[m/s]	1
Acceleration, maximum	[m/s ²]	10
Repeatability	[± mm]	0.01
Input speed, maximum	[rpm]	6000
Operation temperature limits	[°C]	-20 - +70
Dynamic load (Fx), maximum	[N]	3200
Dynamic load (Fy), maximum	[N]	20
Dynamic Ioad (Fz), maximum	[N]	20
Dynamic load torque (Mz, My), maximum	[Nm]	25
Screw versions, diameter (d0) / lead (p)	[mm]	12/04, 12/10
Drive shaft force (Frd), maximum	[N]	300
Input torque, maximum (RediMount models)	[Nm]	5.1
Drive shaft torque (Mta), maximum	[Nm]	9.2

Performance Diagrams



Dimensions - PC32

At: male threaded role and shown, see ordering key and accessories for information on all available ends. A5: side of cover tube for mounting of sensors. A6: distance to center of coupling tightening hole.

Dimensions for Parallel Style with RediMount Motor Flange

Dimensions Projection

Bell House Length (C)	
Motor shaft length [mm]	C [mm]
20 - 27	59
27 - 34	66
34 - 41	73

RediMount Flange Motor Dimensions Compatibility		
Motor data	Flange A [mm]	Flange B [mm]
Bolt circle diameter (BC)	37 - 50	50 - 99
Shaft diameter	5 - 16	
Shaft length	20 - 41	
Pilot diameter	16 - 39	16 - 75
Pilot length	max. 4	

Weight of Unit [kg] 0.681 + (S [mm] × 0.0034)

Dimensions	Projection
METRIC	$ \bigcirc $

RediMount Flange Motor Dimensions Compatibility		
Motor data	Flange C [mm]	Flange D [mm]
Bolt circle diameter (BC)	25 - 72	72 - 99
Shaft diameter	5 - 14	
Shaft length	15 - 34	
Pilot diameter	16 - 54 16 - 74	
Pilot length	max. 4	
Motor square/diameter	max. 82.5	

1.221 + (S [mm] × 0.0034)

Weight of Unit [kg]

	A1 L=Smax+105	6 A4 14 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2 A2
Flange C	Flange D	45
45 0	92 00 00 00 00 00 00 00 00 00 00 00 00 00	

A1: grease port

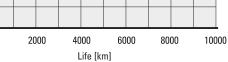
A2: M6 thread, max. depth 30 mm A3: no thread A4: male threaded rod end shown, see ordering key and accessories for information on all available ends.

A5: side of cover tube for mounting of sensors.

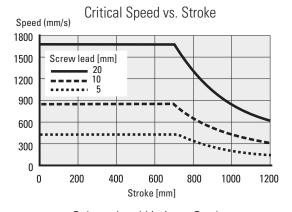
www.thomsonlinear.com

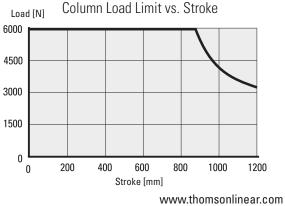
Specifications - PC40



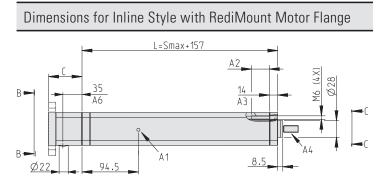

Standard Features and Benefits

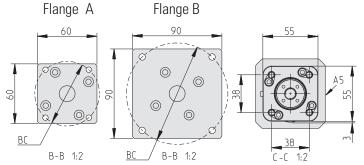
- Compact, robust and reliable
- Stroke up to 1200 mm
- Load up to 6000 N
- Speed up to 1.66 m/s
- Stainless steel extension tube
- IP65 as standard
- Mounting accessories according to pneumatic ISO standard


General Specifications		
Parameter	PC40	
Profile size (w × h) [mm]	55 × 55	
Type of screw	ball screw	
Protection class	IP65	
Lubrication	one point lubrication of ball screw	

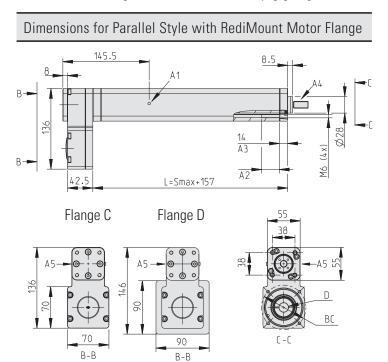

Performance Specifications		
Parameter		PC40
Stroke length (S max), maximum	[mm]	1200
Linear speed, maximum	[m/s]	1.66
Acceleration, maximum	[m/s ²]	10
Repeatability	[± mm]	0.01
Input speed, maximum	[rpm]	5000
Operation temperature limits	[°C]	-20 - +70
Dynamic load (Fx), maximum	[N]	6000
Dynamic load (Fy), maximum	[N]	50
Dynamic Ioad (Fz), maximum	[N]	50
Dynamic load torque (Mz, My), maximum	[Nm]	25
Screw versions, diameter (d0) / lead (p)	[mm]	20/05, 20/10, 20/20
Drive shaft force (Frd), maximum	[N]	650
Input torque, maximum (RediMount models)	[Nm]	5.8
Drive shaft torque (Mta), maximum	[Nm]	24

0





Dimensions and Performance Diagrams - PC40



 A1: grease port
 A2: M6 thread, max. depth 30 mm
 A3: no thread

 A4: male threaded rod end shown, see ordering key and accessories for information on all available ends.
 A5: side of cover tube for mounting of sensors.

 A6: distance to center of coupling tightening hole.

Dimensions	Projection
METRIC	$ \bigcirc $

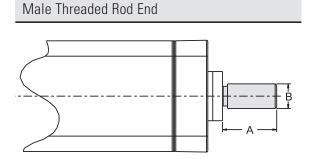
Bell House Length (C)	
Motor shaft length [mm]	C [mm]
20 - 27	62
27 - 34	69
34 - 41	76

RediMount Flange Motor Dimensions Compatibility		
Motor data	Flange A [mm]	Flange B [mm]
Bolt circle diameter (BC)	37 - 72	72 - 107
Shaft diameter	5 - 16	
Shaft length	20 - 41	
Pilot diameter	16 - 54	16 - 85
Pilot length	max. 4	

Weight of Unit	: [kg]
	1.853 + (S [mm] × 0.0052)

Dimensions	Projection
METRIC	

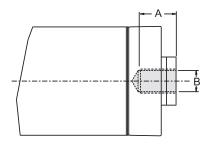
imensions Com	patibility			
Flange C [mm]	Flange D [mm]			
26 - 85 85 - 107				
5 - 16				
15 - 41				
16 - 64	16 - 85			
max. 4				
max. 90.5				
	26 - 85 5 - 15 16 - 64 ma			


Weight of Uni	t [kg]
	2.318 + (S [mm] × 0.0052)

A1: grease port

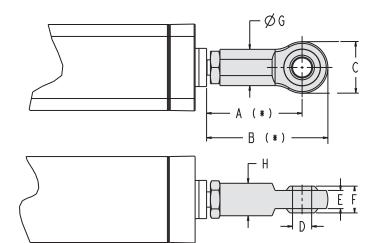
A2: M6 thread, max. depth 30 mm A3: no thread A4: male threaded rod end shown, see ordering key and accessories for information on all available ends. A5: side of cover tube for mounting of sensors.

www.thomsonlinear.com



The male threaded rod end comes mounted from the factory if the ordering code states that the unit shall be equipped with one.

	А	В
PC25	22	M10 × 1.25
PC32	22	M10 × 1.25
PC40	26	M12 × 1.25

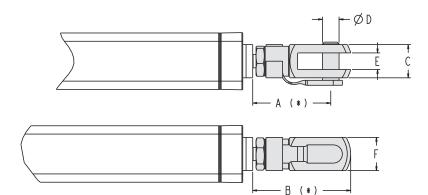

Female Threaded Rod End

The female threaded rod end comes mounted from the factory if the ordering code states that the unit shall be equipped with one.

	А	В
PC25	15	M10 × 1.25
PC32	15	M10 × 1.25
PC40	18	M12 × 1.25

Spherical Joint

The spherical joint comes mounted from the factory if the ordering code states that the unit shall be equipped with one, but it can also be ordered as a separate part using the part number. To be able to mount a separate spherical joint the extension tube must be equipped with a male threaded rod end.


	A (REF.) *	B (REF.) *	С	D (Ø)	E (H9)	F	G	Н	p/n
PC25	50	64	28	10	10.5	14	19	17	D607 406
PC32	50	64	28	10	10.5	14	19	17	D607 407
PC40	58	74	32	12	12	16	22	19	D607 408

* assuming 2 mm gap from jam nut to shoulder.

www.thomsonlinear.com

Front Clevis

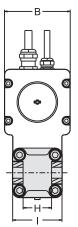


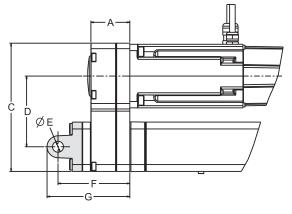
The front clevis comes mounted from the factory if the ordering code states that the unit shall be equipped with one, but it can also be ordered as a separate part using the part number. To be able to mount a separate front clevis the extension tube must be equipped with a male threaded rod end.

	A (REF.) *	B (REF.) *	С	D (Ø h11)	E (B11)	F	p/n
PC25	47	59	20	10	10	20	D607 409
PC32	47	59	20	10	10	20	D607 410
PC40	56	70	24	12	12	24	D607 411

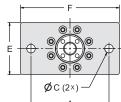
* assuming 2 mm gap from jam nut to shoulder.

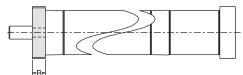
Rear Clevis for PC25 Parallel Style Actuators


The rear clevis consists of a bracket and comes mounted from the factory if the ordering code states that the unit shall be equipped with one. It can also be ordered as a separate part (all necessary actuator attachment screws are included) using the part number.


	А	В	С	D	E (Ø H9)	F	G	H (h14)	I	p/n
PC25	36	45	92	51	8	64	72	16	38	D607 412

Rear Clevis for PC32 and PC40 Parallel Style Actuators



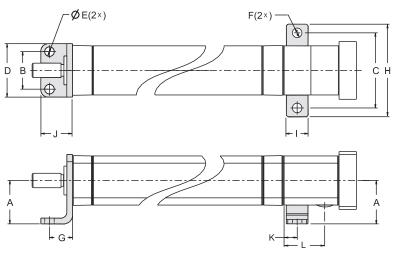


The rear clevis consists of a bracket and comes mounted from the factory if the ordering code states that the unit shall be equipped with one. It can also be ordered as a separate part using the part number in which case it is delivered with the necessary screws to attach it to the actuator.

	А	В	С	D	E (Ø H9)	F	G	H (H14)	I	p/n
PC32	35,5	60	117	64,5	10	65.5	75,5	26	45	D607 413
PC40	42,5	70	136	73,5	12	75.5	88	28	52	D607 414

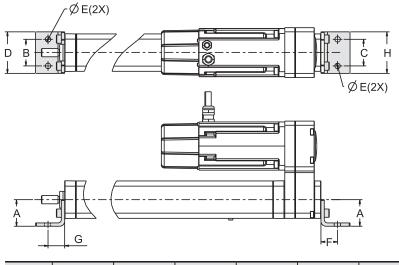
Front Mounting Plate

ØC (4×) \oplus \bigoplus \mathbb{P} Е D \oplus \oplus \oplus \oplus


The front mounting plate consists of a plate and comes mounted from the factory if the ordering code states that the unit shall be equipped with one. It can also be ordered as a separate part using the part number in which case it is delivered with the necessary screws to attach it to the actuator.

	А	В	С	D	E	F	p/n
PC25	60	10	6.6 (2×)	-	40	76	D607 415
PC32	64	10	7.0 (4×)	32	45	80	D607 416
PC40	72	10	9.0 (4×)	36	52	90	D607 417

www.thomsonlinear.com

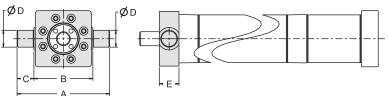

Foot Mount for Inline Style Actuators

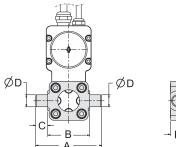
The foot mount consists of a front and rear bracket and comes mounted from the factory if the ordering code states that the unit shall be equipped with one. It can also be ordered as a separate part (all necessary actuator attachment screws are included) using the part number.

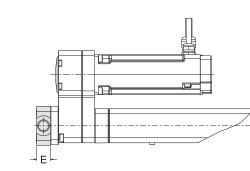
	A (JS15)	В	С	D	E	F	G	Н	I	J	К	L	p/n
PC25	30	26	52	37	6.6	6.6	16	64	15	22	8.5	28	D607 418
PC32	32	32	65	45	6.6	6.6	24	78	15	35	8.5	35	D607 419
PC40	36	36	70	52	9	6.6	28	85	15	36	8.5	38.5	D607 420

Foot Mount for Parallel Style Actuators

The foot mount consists of a front and rear bracket and comes mounted from the factory if the ordering code states that the unit shall be equipped with one. It can also be ordered as a separate part (all necessary actuator attachment screws are included) using the part number.

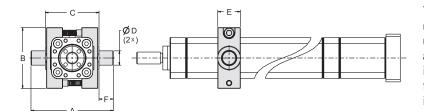

	А	В	С	D	E	F	G	Н	p/n
PC25	30	26	26	37	6,6	16	16	40	D607 421
PC32	32	32	32	45	6,6	24	24	45	D607 422
PC40	36	36	52	52	9	28	28	52	D607 423




Fixed Front Trunnion / Fixed Rear Trunnion Parallel Style Actuators

Front trunnion

Rear trunnion



The fixed front and rear trunnions consist of a plate with two shafts and come mounted from the factory if the ordering code states that the unit shall be equipped with one. They can also be ordered as a separate parts (all necessary actuator attachment screws are included) using the part numbers. The rear trunnion can only be mounted on to the belt gear on parallel style actuators.

	A (REF.)	B (h14)	C (h14)	D (e9)	E	p/n	
						Front	Rear
PC25	66	42	12	12	14	D607 424	D607 433
PC32	74	50	12	12	14	D607 425	D607 434
PC40	95	63	16	16	19	D607 426	D607 435

Movable Cover tube Trunnion

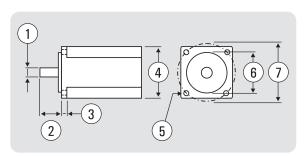
The movable trunnion consists of two clamp units that each have a shaft. The two clamp units are put around the profile of the unit at desired position and joined and locked in place by the lock screws. The movable trunnion comes mounted from the factory if the ordering code states that the unit shall be equipped with one. It can also be ordered as a separate part (all necessary actuator attachment screws are included) using the part number.

	А	В	C (h14)	D (Ø e9)	E	F (h14)	p/n
PC25	45	51	45	12	19	12	D607 427
PC32	74	65	50	12	25	12	D607 428
PC40	95	75	63	16	28	16	D607 429

www.thomsonlinear.com

Sensor Bracket									
				⊫ c T } a	over tube su he bracket c	an be installe rface under v omes with al sors are supp ors.	vhich the se I necessary	nsor magnet items to mou	travels. Int it to the
A (REF.	B (h14)	(h14) C (h14)		D (e9)		F		p/n	
PC25 12.5		8 8		5		31 7.4		1	D607 430
PC32 12.5		8	8	5		31 7.4		1	D607 431
PC40 12.5	12.5 8 8		5		31 7.4		1	D607 432	
Sensors for Sens	or Brack	et							
ensor				Solid state		1	Reed swit		1 L1/+VC
6.5	L			\$∕°	brown blue black		\$	brown –	4 N / - VD0
onnector				Solid state	-` • N.C.		Connecto	r	
	37		3	Solid state		1 + VDC 3 - VDC 4 output		r	
	37	Solid Sta	 te Sensor	\$-\$_	brown	3) ³	tch Sensor
	37		⊥ te Sensor ppen (N.O.)	Solid Sta	brown blue black	- VDC 4 output	te Sensor	³ Reed Swit	cch Sensor
	37	normally c		Solid Sta	brown blue black te Sensor	- VDC - output Solid Stat	te Sensor	3 Reed Swit	
Contact type	37 [VDC/AC]	normally c	open (N.O.)	Solid Star normally cl	te Sensor	3 4 output Solid Stat normally c	te Sensor	3 Reed Switt normally o potential f	open (N.O.)
Contact type Output type		normally c Pt 10 - 3	open (N.O.) NP	Solid Sta normally cl PI	brown blue black te Sensor	3 - VDC 4 output Solid Stat normally c NF 10 - 3	te Sensor	³ Reed Switt normally of potential f 5 -120	open (N.O.) ree contact
Contact type Output type Voltage	[VDC/AC]	normally c Pt 10 - 3	open (N.O.) NP 30 / -	Solid Star normally cl 10 - 11	te Sensor losed (N.C.)	3 - VDC 4 output Solid Stat normally c NF 10 - 3	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3 Reed Switt normally o potential f 5 -120 1	open (N.O.) ree contact / 5 -120
Contact type Output type Voltage Max. current	[VDC/AC] [mA]	normally c Pf 10 - 3 11 - 25 t	open (N.O.) NP 30 / - DO	Solid Sta normally cl Pr 10 - 1 11 - 25 t	brown blue black black black black blosed (N.C.) NP 30 / -	3 4 output Solid State Nermally c Nermally c 10 - 3	4 1 ••• ••• ••• ••• ••• ••• ••• ••• ••• •	³ Reed Switt normally of potential f 5 -120 11 - 25 t	open (N.O.) ree contact / 5 -120 00
Contact type Output type Voltage Max. current Operating temperature	[VDC/AC] [mA] [°C]	normally c Pl 10 - 3 10 - 25 tu 3 ×	open (N.O.) NP 30 / - 20 0 + 85	Solid Star normally cl 10 - 2 11 - 25 tr $3 \times$	te Sensor losed (N.C.) NP 30 / - 00 0 + 85	3 4 0utput Solid Stat normally c NF 10 - 3 10 - 25 to	4 1 ••••••••••••••••••••••••••••••••••	3 Reed Switt normally of potential f 5 -120 11 -25 t 2 ×	open (N.O.) ree contact / 5 -120 00 o + 70
Contact type Output type Voltage Max. current Operating temperature Lead cross section	[VDC/AC] [mA] [°C] [mm ²]	normally c Pr 10 - 3 10 - 25 tr 3 × 25	open (N.O.) NP 30 / - D0 0 + 85 0.14	Solid Sta normally cl PP 10 - 25 t 3×25	brown blue black b	3 4 0utput Solid Stat normally c NF 10 - 3 10 - 25 to 3 × 1	4 $1 \bullet \bullet \bullet$ $1 \bullet \bullet \bullet \bullet \bullet$ $1 \bullet \bullet \bullet \bullet \bullet$ $1 \bullet \bullet \bullet \bullet \bullet \bullet$ $1 \bullet \bullet \bullet \bullet \bullet$ $1 \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ $1 \bullet \bullet$	³ Reed Swit normally of potential f 5 -120 11 -25 t 2 × 30	open (N.O.) ree contact / 5 -120 00 0 + 70 0.14
Contact type Output type Voltage Max. current Operating temperature Lead cross section Length (L)	[VDC/AC] [mA] [°C] [mm ²]	normally c Pr 10 - 3 10 - 25 tr 3 × 25	open (N.O.) NP 30 / - 00 0 + 85 0.14 5.3	Solid Sta normally cl PP 10 - 25 t 3×25	brown blue black te Sensor losed (N.C.) NP 30 / - 00 0 + 85 0.14	3 4 0utput Solid Stat normally c NF 10 - 3 10 - 25 tc 3 × 1 25	4 $1 \bullet \bullet \bullet$ $1 \bullet \bullet \bullet \bullet \bullet$ $1 \bullet \bullet \bullet \bullet \bullet$ $1 \bullet \bullet \bullet \bullet \bullet \bullet$ $1 \bullet \bullet \bullet \bullet \bullet$ $1 \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ $1 \bullet \bullet$	³ Reed Swit normally of potential f 5 -120 11 -25 t 2 × 30	open (N.O.) ree contact / 5 -120 00 0 + 70 0.14 0.5 67 0.3 m PUF cable witt
Contact type Output type Voltage Max. current Operating temperature Lead cross section Length (L) Protection class	[VDC/AC] [mA] [°C] [mm ²]	normally c Pl 10 - 3 10 - 25 tu 3 × 25 IP	oppen (N.O.) NP 30 / - 00 0 + 85 0.14 5.3 67 0.3 m PUR cable with	Solid Sta normally cl Pr 10 - 25 tt 3×25 Pr	brown blue black b	3 4 0utput Solid Stat normally c NF 10 - 3 10 - 25 to 3 × 1 25 IP	te Sensor pen (N.O.) PN 30 / - 20 0 + 85 0.14 5.3 67 0.3 m PUR cable with	3 Reed Switt normally of potential f 5 -120 11 - 25 t 2 × 30 IP	open (N.O.) ree contact / 5 -120 00 0 + 70 0.14 0.5 67 0.3 m PUF cable witt cable witt
Contact type Output type Voltage Max. current Operating temperature Lead cross section Length (L) Protection class Connection	[VDC/AC] [mA] [°C] [mm ²] [mm]	normally c Pt 10 - 3 10 - 25 tu 3 × 25 IP flying leads D607 362	open (N.O.) NP 30 / - 00 0 + 85 0.14 67 0.3 m PUR cable with connector D607 363	Solid Sta normally cl Pr 10 - 25 tr 3 × 25 IP flying leads	brown blue black te Sensor losed (N.C.) NP 30 / - 00 0 + 85 0.14 5.3 67 0.3 m PUR cable with connector	3 - VDC 4 output Solid Stat normally c NH 10 - 3 10 - 25 tr 3 × 1 25 IP flying leads	te Sensor ppen (N.O.) PN 30 / - 00 0 + 85 0.14 67 0.3 m PURcable withconnector	³ Reed Switt normally of potential f 5 -120 11 - 25 t 2 × 30 IP flying leads	ree contact / 5 -120 00 0 + 70 0.14 0.5
Contact type Output type Voltage Max. current Operating temperature Lead cross section Length (L) Protection class Connection	[VDC/AC] [mA] [°C] [mm ²] [mm]	normally c Pt 10 - 3 10 - 25 tu 3 × 25 IP flying leads D607 362	open (N.O.) NP 30 / - 00 0 + 85 0.14 67 0.3 m PUR cable with connector D607 363	Solid Sta normally cl Pr 10 - 25 tr 3 × 25 IP flying leads	brown blue black te Sensor losed (N.C.) NP 30 / - 00 0 + 85 0.14 5.3 67 0.3 m PUR cable with connector	3 - VDC 4 output Solid Stat normally c NH 10 - 3 10 - 25 tr 3 × 1 25 IP flying leads	4 1 ••••••••••••••••••••••••••••••••••	3 Reed Switt normally of potential f 5 -120 11 -25 t 2 × 30 flying leads D607 368	ppen (N.O.) ree contact / 5 -120 00 0 + 70 0.14 0.5 67 0.3 m PUF cable with connector

How To Order


The PC-Series[™] ordering key provides a quick overview of the product versions available. It is important to consider many details of your application when selecting a product, including the loads and speeds required as well as the product environment and necessary accessories. Use our online selection tool at www.thomsonlinear.com/pcseries or contact us for further support.

Ordering Key									
1	2	3	4	5	6	7	8	9	
PC	25	LX	423	B10-	0270	1			
 Actuator typ PC = PC-Series Size 25 = profile siz 32 = profile siz 40 = profile siz 3. Transmission SX = inline styl LX = inline styl PA = parallel siz 4. RediMount r 000 - 998 = co 	e precision linear e 34 × 34 mm e 45 × 45 mm e 55 × 55 mm n type e, directly couple tyle, 1:1 belt gea notor ID ⁽¹⁾ de for suitable fl	I	t flange ange sition omers choice of r		6. Stroke lengt 0000 – 9999 = 7. Cylinder mor R = rear trunnin C = rear clevis F = feet kit M = trunnion (r T = front trunni P = front moun	distance in mm unting on (fixed, mounte novable) on (fixed, mount ting plate y cylinder mount ad (standard) rad	ed on front housi		
5. Screw type a		s no RediMount f	lange. 127	C = front clevis 9. Environmental					
B03– = ball scr B04– = ball scr	rew, 3 mm lead (rew, 4 mm lead (possible for PC25 possible for PC32 possible for PC40	2 only)	1 = IP65 rating (standard)					
B10– = ball scr	ew, 10 mm lead	(possible for all (possible for PC4) (possible for PC4)	sizes)		 (1) See section "RediMount[™] Selection" below. (2) Always use XXX in combination with transmission type SX. 				

RediMount[™] Selection

These are the key dimensions you need to know to be able to define the RediMount code and flange size for your choice of motor and PC-Series actuator.

- 1. Motor shaft diameter
- 2. Motor shaft length
- 3. Mounting flange thickness
- 4. Motor square/diameter size
- 5. Mounting bolt thru hole diameter
- 6. Motor pilot diameter
- 7. Mounting bolt circle

Let our online RediMount selection tool assist you! www.thomsonlinear.com/pcseries

www.thomsonlinear.com

Online Sizing, Selection and Design Tools

Thomson offer a wide variety of online application, selection, and training tools to help you in the selection process. Together, with our direct contact customer support center, we can help you find the PC-Series[™] actuator model that best fits your application needs. Visit www.thomsonlinear.com/ pcseries for additional online information.

Product Selector

The product selector will walk you through the selection process.

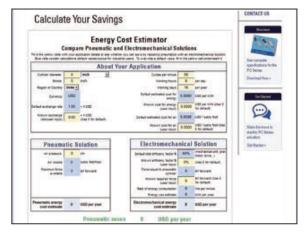
www.thomsonlinear.com/pcseries

PC-Series™ Microsite

Get additional information and learn more about the electromechanical advantage on our microsite. www.thomsonlinear.com/conversion

Interactive 3D CAD Models

Download interactive 3D CAD models in the most common CAD formats for free.


www.thomsonlinear.com/pcseries

Energy Cost Estimator

See how much you could save by switching from pneumatics cylinders.

www.thomsonlinear.com/pc_calc

EUROPE

United Kingdom Thomson Phone: +44 (0) 1271 334 500 Fax: +44 (0) 1271 334 501 E-mail: sales.uk@thomsonlinear.com

Germany

Thomson Nürtinger Straße 70 72649 Wolfschlugen Phone: +49 (0) 7022 504 0 Fax: +49 (0) 7022 504 405 E-mail: sales.germany@thomsonlinear.com

France

Thomson Phone: +33 (0) 243 50 03 30 Fax: +33 (0) 243 50 03 39 E-mail: sales.france@thomsonlinear.com

Italy

Thomson Largo Brughetti 20030 Bovisio Masciago Phone: +39 0362 594260 Fax: +39 0362 594263 E-mail: info@thomsonlinear.it

Spain

Thomson Rbla Badal, 29-31 7th, 1st 08014 Barcelona Phone: +34 (0) 9329 80278 Fax: + 34 (0) 9329 80278 E-mail: sales.esm@thomsonlinear.com

Sweden

Thomson Estridsväg 10 29109 Kristianstad Phone: +46 (0) 44 24 67 00 Fax: +46 (0) 44 24 40 85 E-mail: sales.scandinavia@thomsonlinear.com

USA, CANADA and MEXICO

Thomson 203A West Rock Road Radford, VA 24141, USA Phone: 1-540-633-3549 Fax: 1-540-633-0294 E-mail: thomson@thomsonlinear.com Literature: literature.thomsonlinear.com

ASIA

Asia Pacific

Thomson 750, Oasis, Chai Chee Road, #03-20, Technopark @ Chai Chee, Singapore 469000 E-mail: sales.apac@thomsonlinear.com

China

Thomson Rm 2205, Scitech Tower 22 Jianguomen Wai Street Beijing 100004 Phone: +86 400 6661 802 Fax: +86 10 6515 0263 E-mail: sales.china@thomsonlinear.com

India

Thomson 1001, Sigma Building Hiranandani Business Park Powai , Mumbai – 400076 Phone: +91 22 422 70 300 Fax: +91 22 422 70 338 E-mail: sales.india@thomsonlinear.com

Japan

Thomson Minami-Kaneden 2-12-23, Suita Osaka 564-0044 Japan Phone: +81-6-6386-8001 Fax: +81-6-6386-5022 E-mail: csinfo_dicgj@danaher.co.jp

Korea

Thomson F12 Ilsong Bldg, 157-37 Samsung-dong, Kangnam-gu, Seoul, Korea (135-090) Phone: +82 2 6917 5049 Fax: +82 2 6917 5007 E-mail: sales.korea@thomsonlinear.com

SOUTH AMERICA

Thomson Sao Paulo, SP Brazil Phone: +55 11 3879-6600 Fax: +55 11 3879 6656 E-mail: sales.brasil@thomsonlinear.com

PC_Series_Precision_Linear_Actuators_BRUK0005-02B | 20140310TJ Specifications are subject to change without notice. It is the responsibility of the product user to determine the suitability of this product for a specific application. All trademarks property of their respective owners. © Thomson Industries, Inc. 2014

BIBUS s.r.o. +420 547 125 300 www.bibus.cz