Centrifugally Lift Off Sprags Freewheels

RSRV RSRT

TYPE

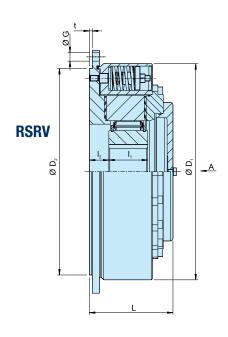
The types RSRV and RSRT are centrifugally lift-off sprag type high speed backstops with integral torque limiter. Please refer to the RSCI design on catalogue pages 72 to 75 for complementary information on Stieber centrifugally lift-off sprag type backstops.

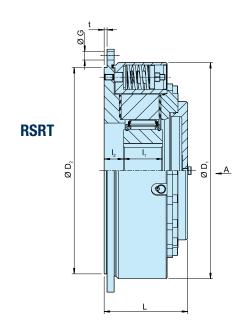
The high quality oil through-impregnated friction linings ensure a consistent and reliable slip torque even when not in operation for a long length of time. The slip torque is factory pre-set to the application requirements.

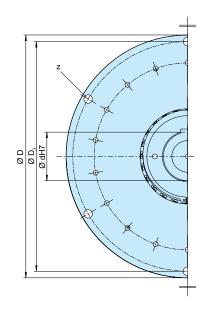
These assemblies are primarily intended for installation on multiple drives where two or more backstops share the reverse load, such as on large inclined conveyors.

The RSRV is the pure load-sharing version. No maintenance and adjustments are necessary.

In addition, the RSRT can be progressively released under load by a mechanical device. Alternatively we can offer a hydraulic release solution for a fully controlled safe release procedure.


The slip torque should be set 20% higher than the maximum static return torque including overload conditions.

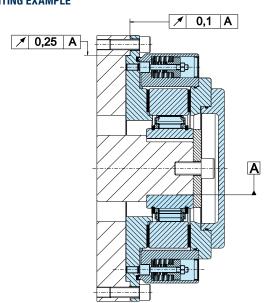

These units are not bearing supported internally. The outer member must be centred on the machine housing.


Concentricity and run-out limits must be observed.

Centrifugally Lift Off Sprags Freewheels

RSRV, RSRT

Type	Size										Number					Weight
		d H7	T 1)	n _{min} ²⁾	n _{max} 3)	D	D ₁	$\mathbf{D}_{2 \text{ h7}}$	D_3	t	Z	L	l ₁	l ₂ ⁴⁾	G	
		[mm]	[Nm]	[min ⁻¹]		[mm]	[mm]	[mm]	[mm]	[mm]		[mm]	[mm]	[mm]		[kg]
RSRV RSRT	85	50, 60	1400	490	5300	330	286	280	308	6	6	135	60	29	M12	50
	100	60, 70	2300	480	4100	350	308	300	328	6	6	140	60	31	M12	60
	120	70, 80	3400	370	3600	400	345	340	373	6	6	150	70	31	M16	80
	140	65, 90	4500	420	2700	430	375	375	403	6	6	150	70	31	M16	95
	170	90, 100	8000	400	2400	500	445	425	473	6	6	170	80	40	M16	150
	200	130, 150	12500	370	2400	555	500	495	528	6	6	170	80	40	M16	180
	240	150, 180	21 500	310	1300	710	630	630	670	8	12	185	90	50	M20	350
	260	150, 190	30 000	275	1000	750	670	670	710	8	12	205	105	50	M20	420


NOTES

- Maximal slipping torque.
 A lower slipping torque can be set.
- This minimum allowable overrunning speed n_{min} should not be reduced under continuous operation. Possible reduction of this minimum speed on request.
- 3) Maximal speed, inner race overruns Keyway to DIN 6885.1
- 4) Tolerance +2

When ordering, please specify direction of rotating seen from arrow »A«.

- »R« Inner race overruns in clockwise direction.
- $\ensuremath{^{\text{NL}}}\ensuremath{^{\text{K}}}$ Inner race overruns in counterclockwise direction.
- » Refer to mounting and maintenance instructions pages 12 to 13

MOUNTING EXAMPLE

