

MU Series Mini Free Mount Cylinder

Compendium of MU Series

Bore size: 4, 6, 8, 10, 12, 16, 20

Magnetic switch slots around the cylinder body

There are magnetic switch slots around the cylinder body convenient to install inducting switch.

Two kinds of rod type

Mounted from 4 directions

Cylinder can be mounted from 4 directions, and convenient to install and use.

Mounted side by side

Multitudinous cylinder can be mounted side by side to save space.

Mounted side by side from right

Front mounting

Criteria for selection: Cylinder thrust

Unit: Newton(N)

Bore	Rod	A ati	ng type	Pressure	Operating pressure(MPa)											
size	size	ACII	ig type	area(mm²)	0.1	0.2	0.3	0.4	0.5	0.6	0.7					
		Single a	cting_push	12.6	-	0.3	1.6	2.8	4.1	5.3	6.6					
4	2	Double	Push side	12.6	1.3	2.5	3.8	5.0	6.3	7.6	8.8					
		acting	Pull side	9.4	0.9	1.9	2.8	3.8	4.7	5.6	6.6					
		Single a	cting_push	28.3	-	-	5.1	7.9	10.7	13.5	16.4					
6	4	Double	Push side	28.3	-	5.7	8.5	11.3	14.2	17.0	19.8					
		acting	Pull side	15.7	-	3.1	4.7	6.3	7.9	9.4	11.0					
		Single a	cting_push	50.3	-	-	8.3	13.4	18.4	23.4	28.5					
8	5	Double	Push side	50.3	-	10.1	15.1	20.1	25.2	30.2	35.2					
		acting	Pull side	30.6	-	6.1	9.2	12.2	15.3	18.4	21.4					
		Single a	cting_push	78.5	-	8.7	16.5	24.4	32.2	40.1	47.9					
10	6	Double	Push side	78.5	1.3	15.7	23.6	31.4	39.3	47.1	55.0					
		acting	Pull side	50.3	0.9	10.1	15.1	20.1	25.2	30.2	35.2					
		Single a	cting_push	113,1	-	13.6	24,9	36.2	47.5	58.9	70.2					
12	6	Double	Push side	113.1	11.3	22.6	33.9	45.2	56.5	67.9	79.2					
		acting	Pull side	84.8	8.5	17.0	25.4	33.9	42.4	50.9	59.4					
		Single a	cting_push	201.1	-	27.0	47.1	67.2	87.3	107.4	127.5					
16	8	Double	Push side	201.1	20.1	40.2	60.3	80.4	100.5	120.6	140.7					
		acting	Pull side	150.8	15.1	30.2	45.2	60.3	75.4	90.5	105.6					
		Single a	cting_push	314.2	-	36.8	68.2	99.7	131.1	162.5	193.9					
20	10	Double	Push side	314.2	31.4	62.8	94.2	125.7	157.1	188.5	219.9					
			Pull side	236.5	23.7	47.1	70.7	94.2	117.8	141.4	164.9					

Installation and application

- When load changes in the work, the cylinder with abundant output capacity shall be selected.
- Relative cylinder with high temperature resistance or corrosion resistance shall be chosen under the condition of high temperature or corrosion.
- Necessary protection measure shall be taken in the environment with higher humidity, much dust or water drops, oil dust and welding dregs.
- 4. Dirty substances in the pipe must be eliminated before cylinder is connected with pipeline to prevent the entrance of particles into the cylinder.
- 5. The medium used by cylinder shall be filtered to $40\mu m$ or below.
- 6. As both of the front cover and piston of the cylinder are short, typically too large stroke can not be selected.
- Anti-freezing measure shall be adopted under low temperature environment to prevent moisture freezing.
- The cylinder shall avoid the influence of side load in operation to maintain the normal work of cylinder and extend the service life.
- 9. If the cylinder is dismantled and stored for a long time, please conduct anti-rust treatment to the surface. Anti-dust caps shall be added in air inlet and outlet ports. The front and back cover can not be dismantled, which shall be especially noticed.

AITTAE

MII Sprips

Specification

Bore size	(mm)	4 6 8 10 12 16										
Acting typ	е	MU: Double acting MSU: Single acting_Pull type										
Fluid		Air(to be filtered by 40µm filter element)										
Operating	Double acting	0.2~0.7MPa(29~100psi)		0.15	~0.7MP	a(22~10	00psi)					
pressure	Single acting	0.3~0.7MPa(44~1	100psi)		0.2~	0.7MPa	(29~10	0psi)				
Proof pres	sure	1.2MPa(175psi)										
Temperati	ure ℃		-2	20~70								
Speed ran	ige mm/s	Double acting:	30~50	0 Sin	gle act	ing: 50	0~500					
Stroke tole	erance			+1.0								
Cushion ty	уре	No		Bumper								
Port size		M3×0.5 M5×0.8										

Add) Refer to P590 for detail of sensor switch.

Symbol

Product feature

- 1. JIS standard is implemented.
- 2. Cylinder can be mounted from 4 directions, and convenient to install and use.
- Multitudinous cylinder can be mounted side by side to save space.
- 4. The front end of the cylinder is designed with boss.
 Centering can be done easily.
- The internal diameter of the body is treated with rolling followed by the treatment of hard anodizing, forming an excellent abrasion resistance and durability.
- 6. With magnet type is of the feature of position sensing.
- 7. There are magnetic switch slots around the cylinder body, which is convenient to install inducting switch.
- 8. The seal of piston adopts heterogeneous two-way seal structure. It has compact dimension and the function of grease reservation.

Stroke

Bore	e size (mm)	Standard stroke (mm)	Max.std stroke
	Double acting	4 6 8 10 15 20	20
4	Single acting	4 6	6
	Double acting	4 6 8 10 15 20 25 30	30
6	Single acting	4 6 8	8
	Double acting	4 6 8 10 15 20 25 30	30
8	Single acting	4 6 8 10	10
	Double acting	4 6 8 10 15 20 25 30	30
10	Single acting	4 6 8 10	10
	Double acting	5 10 15 20 25 30 35 40 45 50	50
12	Single acting	5 10	10
	Double acting	5 10 15 20 25 30 35 40 45 50	50
16	Single acting	5 10	10
	Double acting	5 10 15 20 25 30 35 40 45 50	50
20	Single acting	5 10	10

Note) 1. Please contact the company for other special strokes.

The dimensions of non-std stroke cylinder has the same dimensions as the next longer stroke std. stroke cylinder. e.g. 23mm stroke cylinder has the same dimensions of 25 std. stroke cylinder.

Ordering code

366

Airtac

MII Series

Inner structure and material of major parts

NO.	Item	Material
1	Piston rod	Stainless steel or Carbon steel with 20 μ m chrome plated
2	C clip	Spring steel
3	Front cover	Aluminum alloy
4	Front cover packing	NBR
5	O-ring	NBR
6	Bumper	TPU
7	Body	Aluminum alloy
8	Magnet holder	Brass(Φ12)/Aluminum alloy(Others)
9	Magnet washer	NBR
10	Magnet	Sintered metal (Neodymium-iron-boron)
11	Piston	Brass(Φ12,16)/Aluminum alloy(Others)
12	Piston seal	NBR
13	Back cover	No(Φ12,16)/Aluminum alloy(Others)

Note: inner structure & material data sheet is based on certain bore size.

Please contact AirTAC if you need inner structure & material data sheet for specific bore size.

Dimensions

[Note] The value in the "()" is single-acting type's value.

Φ6~Φ10

Bore size\Item	Α	AC	KB	Α	AC	KB	АВ	ь	_		D	DA	_	EA		Н	v	KA	кс		LB	LC	М	МА		ВΛ	РВ	DC.
Dore Size litem	Wit	h maç	net	With	out ma	agnet	AD	P	٦	MU	MSU	DA	_ =	EA	ΜU	MSU	'	NA.	N.C		LB	LC	IVI	IVIA	F	FA	FB	FC
6	24	18	11.5	19	13	6.5	6	13	19	4	3.5	3	M2.5×0.45	5	3.5	3	3.3	3	7	3.3	7	7	9	3	M3×0.5	5.5	3.5	3
8	24	18	11.5	19	13	6.5	6	13	21		5	3	M3×0.5	6	4	1.5	3.3	3	8	3.3	7	8	11	3	M3×0.5	5.5	3.5	3
10	24	18	11.5	19	13	6.5	6	13.5	22		6	3	M3×0.5	6		5	3.3	3	8.5	3.3	7	8.5	12	3	M3×0.5	5.5	3.5	3.5

Φ 6~ Φ 10(Male thread)

Bore size\Item	AB	D(MU)	D(MSU)	DA	E	EA	EB	FA	Н
6	12.5	4	3.5	9.5	M3×0.5	5.5	6.5	2.4	3.5
8	14.5	5	5	11.5	M4×0.7	7	8.5	3	4
10	16.5	6	6	13.5	M5×0.8	9	10.5	4	5

[Note] The unmarked dimensions are the same as Female type.

MII Sprips

Ф12~Ф20(Transverse mounted)

Bore size\Item	Α	AC	КВ	Α	AC	КВ	АВ	Б	С	CA	_	_	E A		V	V A	кс		ı p	LC		MA		_ A	РВ
Bore Size\tem	w	ith magn	et	Wit	hout mag	net	АБ	P		CA	ט	_ =	EA	П	n	NΑ	N.C	_	LD	LC	IVI	IVIA	P	PA	PB
12	25.5(30.5)	22(27)	8.5(13.5)	20.5(25.5)	17(22)	3.5(8.5)	3.5	17	28.5	15.5	6	M3×0.5	6	5	4.3	6	11	4.3	8	11	7.5	7	M5×0.8	7.5	5
16	27(32)	23.5(28.5)	9(14)	22(27)	18.5(23.5)	4(9)	3.5	21	31.5	17	8	M4×0.7	8	6	4.3	6	12.5	4.3	11.5	12.5	7.5	7	M5×0.8	8	5.5
20	29(34)	24.5(29.5)	10.5(15.5)	24(29)	19.5(24.5)	5.5(10.5)	4.5	25	38.5	21	10	M5×0.8	7	8	5.5	7	15.5	5.5	13.5	15.5	9	9	M5×0.8	9	5.5

[Note] The value in the *()* are single-acting type's value.

Φ12~Φ20(Axial mounted)

Bore size\Item	Α	AC	Α	AC	АВ	В	_	_	CA	F	EA			LB	LC	М	MA	В	PA	РВ
Bore Size/Item	With	nagnet	Without	magnet	AD		"	ן ט	CA		EA	П .	-	LB	LC	IVI	IVIA	F	FA	FB
12	25.5(30.5)	22(27)	20.5(25.5)	17(22)	3.5	17	28.5	6	15.5	M3×0.5	6	5	4.3	8	11	7.5	4.5	M5×0.8	7.5	5
16	27(32)	23.5(28.5)	22(27)	18.5(23.5)	3.5	21	31.5	8	17	M4×0.7	8	6	4.3	11.5	12.5	7.5	4.5	M5×0.8	8	5.5
20	29(34)	24.5(29.5)	24(29)	19.5(24.5)	4.5	25	38.5	10	21	M5×0.8	7	8	5.5	13.5	15.5	9	5.5	M5×0.8	9	5.5

[Note] The value in the "()" are single-acting type's value.

Bore size\Item	AB	D	E	EA	EB	F	FA	Н
12	14	6	M5×0.8	9	10.5	8	4	5
16	15.5	8	M6×1.0	10	12	10	5	6
20	18.5	10	M8×1.25	12	14	12	6	8

[Note] The unmarked dimensions are the same as Female type.

A