


We design and produce in order to support you

An international group for technology, a local support for service

Over 40 years of know how in design and production

Applications

Values

High level technical consulting

Cross competences in several industrial sectors for an effective problem-solving

Collaboration

Solutions

From a full range of standard products to fit-to-customer solutions for best perfomances

A complete range for linear motion which reaches every customer

Linear and curved guides with ball and roller bearings, with hardened raceways, high load capacities, self-alignment and capable of working in dirty environments.

near Line

A global provider of solutions for applications for linear motion

Telescopic Line Telescopic guides with ball bearings,

with hardened raceways, high load capacities, and low bending, resistant to shocks and vibrations. For partial, total or extended extraction up to 200% of the length of the guide.

Actuator Line

Linear actuators with different guide configurations and drives,

available with belt, screw or rack and pinion drives according to different needs in terms of precision and speed. Guides with bearings or ball recirculating systems for different load capacities and critical environments.

Integrated actuators for industrial automation,

they find applications in numerous industrial sectors: from machinery servo systems to high precision assembly systems, packaging lines and high speed production lines. It has evolved from Actuator Line series in order to meet the most demanding needs of our customers.

Content

Technical features overview

X-Rail

1 Product explanation	
X-Rail roller sliders TEN-UEN-TEX/TES series	XR-2
TEN-UEN-TEX/TES series	XR-3
2 General characteristics	
"X-Rail" roller sliders construction design	XR-4
Roller positioning for sliders assembly, Slider with 3 and 5 rollers	XR-5
3 Dimensions and load capacity	
Rails series TEN and UEN "nitride"	XR-7
Rail size	XR-8
CEN26 - CEN30 Sliders	XR-9
CEN40 Sliders	XR-10
TEX inox rails	XR-11
Rail size	XR-12
CEX sliders	XR-13
TES rails	XR-14
Rail size	XR-15
CES sliders	XR-16
TEN40+UEN40 self-aligning system	XR-17
Rollers for TEN and UEN series rails	XR-18
Lubrication and use of wipers	XR-20
Sizing verification	XR-21

Telerace

1 Product explanation Telerace roller telescopic slid TLR-TLQ series, TLN-TQN ser

2 General characteristics TLR-TLQ series TLN-TQN series

3 Dimensions and load ca Roller telescopic slides TLR s Roller telescopic slides TLQ s Roller telescopic slides TLN s Roller telescopic slides TLAX Roller telescopic slides TQAX Sizing of telescopic applicati Verification of load capacity Lifetime calculation

O-Rail

1 Product explanation O-Rail - unique assembly possibilities FXRG series	0R-2
2 General characteristics Configurations	0R-4
3 Dimensions and load capacity FXRG series Rollers for FXRG Mounting configurations	0R-5 0R-7 0R-8

des ries, TLAX-TQAX series	TLR-2 TLR-4
	TLR-5
	TLR-5
apacity	
series	TLR-7
series	TLR-10
series	TLR-13
(series "INOX"	TLR-18
K series "INOX"	TLR-20
ions	TLR-23
	TLR-24
	TI B-25

Product explanation $\parallel \checkmark$

X-Rail roller sliders TEN-UEN-TEX/TES series

X-Rail

Rails are made from sheet steel, shaped by high precision, ultra-smooth forming rollers. And then hardened using Rollon-NOX nitriding and black oxidising process to ensure an extended lifetime and excellent corrosion resistance. The slider bodies are cataphoretically blackened for maximum corrosion resistance. The rollers are made from core tempered and precision ground, bearing grade steel. The ball bearings are lubricated for life with wide temperature range bearing grease and protected by 2Z rated metal shields. Robust elastomer raceway wipers are fitted at both ends of the slider to protect the rollers and keep the raceways clean. The wipers incorporate oil-impregnated felt pads to keep the points of contact between raceway and roller properly lubricated, for the lifetime of the rail. Wipers are held in place by a simple clip and can be removed and replaced easily.

Maximum compactness

Compact section rails in a range of sizes, with protected internal rollers. Black finish sliders

Elegant, top quality, black finish obtained by coating-free thermochemical treatment. Flame and abrasion resistant. Does not flake off.

Optimum lubrication

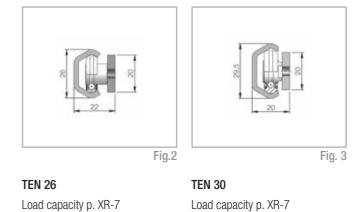
Extended, maintenance-free lifetime thanks to wipers with slow release felt lubricating pads that deposit a thin film of lubricant on the raceways.

Maximum strength

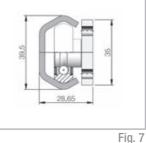
Fully nitrided hardened and black oxidised rails for excellent wear resistance and effective protection against corrosion.

Smooth sliding

Superbly smooth sliding, thanks to optimal preload adjustment of the eccentric rollers and good lubrication provided by the wipers with incorporated felt.


Self-aligning system

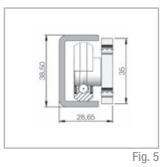
Can be used in conjunction with UEN U section rails to create a selfaligning two-slide motion system capable of compensating for installation alignment errors.


The most important characteristics:

- Silent and smooth movement
- Hardened for long lifetime with no wear
- Without maintenance
- Self-aligning
 - Smooth black oxidation
 - Strong wipers with incorporated preoiled felt
 - High corrosion resistance
 - Option for customized colour

TEN-UEN-TEX/TES series

TEX26-TES26 Load capacity p. XR-11


)-TES40

Load capacity p. XR-11

XR-2

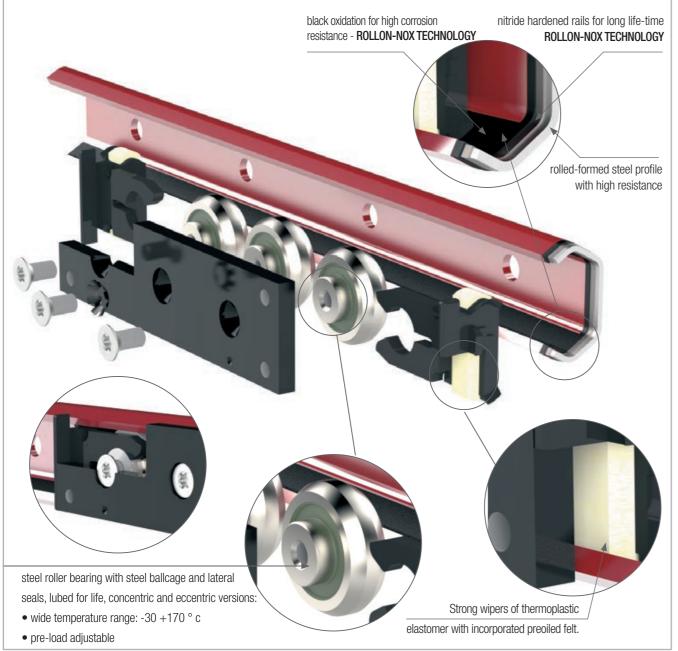
TEN 40

Load capacity p. XR-7

UEN 40

Load capacity p. XR-7

General characteristics

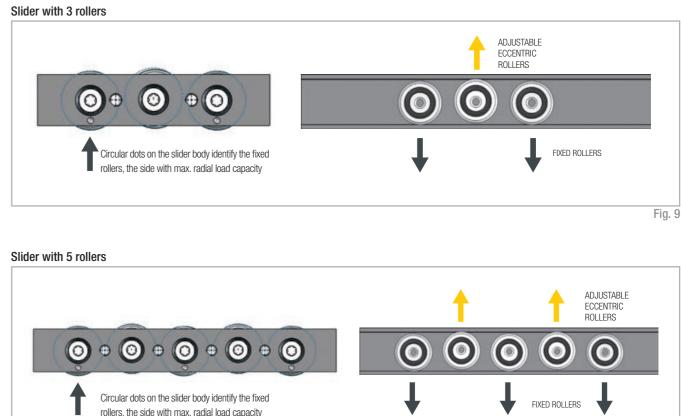

"X-Rail" roller sliders construction design

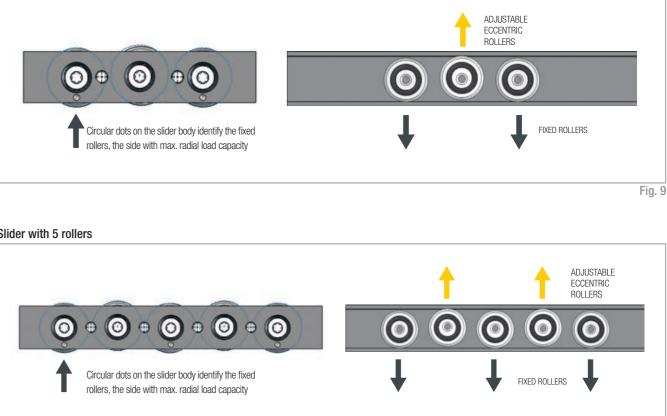
Optional surface treatments where high corrosion resistance is required: Rollon e-coating technology, black epoxy resin electrodeposition (K version) with controlled thickness on the entire surface, except on the raceways, as masked before electrodepositioning. The raceways remain with standard oxidation treatment and protected with a thin layer of lubricant, released by the wipers.

- Corrosion resistance tested for 700 hours in salty fog
- Superb black glossy finish
- Excellent resistance in humid ambients
- Good resistance to oils and hydrocarbons

Optional customized rail coloring based on epoxy paint for application where special design look and high corrosion resistance are required. Standard in white and red color (versions CW and CR) with controlled thickness on the entire surface except on the raceways, which are masked previously to coloring. The raceways remain with standard oxidation treatment and protected with a thin layer of lubricant, released by the wipers.

Unique esthetic coloring for design needs

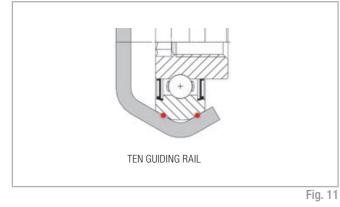

Roller positioning for sliders assembly


The sliders are available in 3 and 5 rollers configuration.

The 3 roller version has the two lateral rollers aligned and in contact with The sliders' max. radial load capacities are given by the highest number the same raceway. These two rollers are concentric and "fixed" - blocked of rollers aligned against the same raceway. As non symmetric roller with Loctite. The adjustable central roller is eccentric for preloading positioning, the sliders must be positioned correctly during installation against the opposite raceway. to obtain listed radial load capacities. Circular marks on the slider body, indicate the side with most rollers in contact with same raceway.

The 5 roller version has the two lateral and central roller aligned against the same raceway. These three rollers are "fixed". The lateral are concentric rollers, while the central is an eccentric roller. The two adjustable rollers, next to the lateral roller, are eccentric and preloaded against the opposite raceway.

Slider with 3 and 5 rollers



Maximum Load Capacity

Contact points of the rollers

The two inclined bearing slopes run on the two slopes of the V-shaped raceways of the TEN rail. These 2 points contact on each roller in upper or lower raceway, assure both radial and axial load capacity.

The flat central surface of the roller runs on the flat raceway of the UEN rail. This one point contact of each roller in upper or lower raceway, provide only radial load capacity, but allows for axial floating capability.

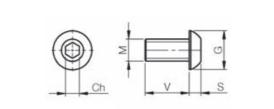
Dimensions and load capacity

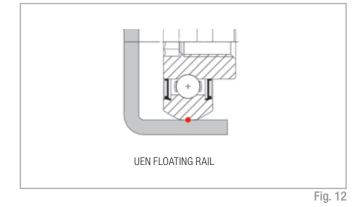
Rails series TEN and UEN "nitride" >

Design

TEN and UEN series rails are made from sheet steel and shaped by high precision, ultra-smooth forming rollers. They are then fully nitrided, black oxidised and impregnated with rust inhibitor for maximum corrosion resistance.

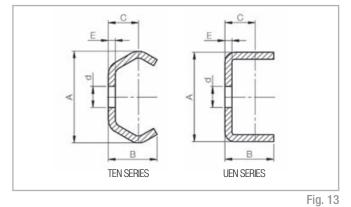
Rail mounting holes


Rail mounting holes have an 80 mm pitch. Either ISO 7380 button head Allen screws or Rollon flat head screws can be used.

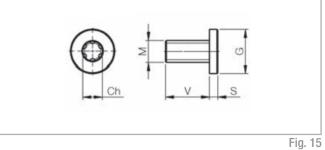

Reference code	A (mm)	B (mm)	C (mm)
TEN 26	26	14	9,5
TEN 30	29,5	15	10
TEN 40	39,5	21	13
UEN 40	38,5	21	13

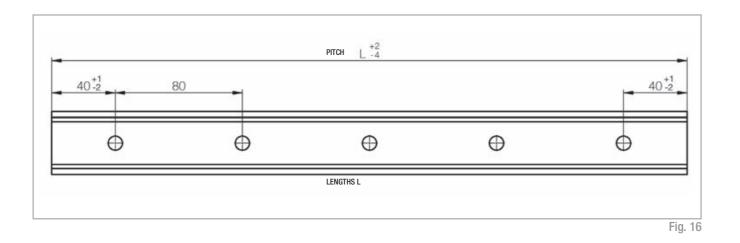
Fixing screw dimensions

Reference code	KIT CODE (100 pz)	Screw type	М	v	G	S	Ch	Tightening torque
TEN 26	KIT-40.VB-E.0510.ZB	M5x10 ISO 7380	M5	10	9,5	2,7	3	9 Nm
TEN 30	KIT-40.VC-SP01.0510.ZB	M8x10 ISO 7380	M5	10	10	2	T25	9 Nm
	KIT-40.VB-E.0810.ZB	M8x10 (ISO 7380)	M8	10	14	4,3	5	20 Nm
TEN 40 UEN 40	KIT-40.VC-SP01.0812.ZB	M8x12 (TORX)	M8	12	16	3	T40	20 Nm
OLIV IO	KIT-40.VC-SP01.0816.ZB	M8x16 (TORX)	M8	16	16	3	T40	20 Nm
The screws are not	supplied with rails, can be bought separ	ately.						Tab. 2


Standard iso 7380 screws


```
X-Rail
```



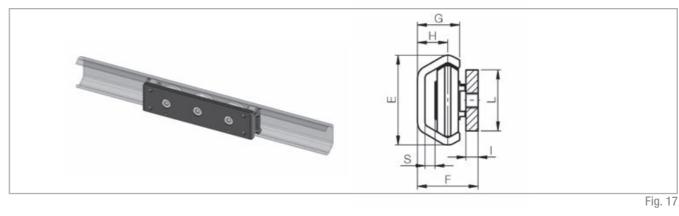


d (mm)	E (mm)	Screw type standard	WEIGHT (kg)
6,5	2,5	M5 (ISO 7380)	0,80
6,5	2,5	M5 (ISO 7380)	0,95
9	3	M8 (ISO 7380)	1,55
9	3	M8 (ISO 7380)	1,70
			Tob 1

Tab. 1

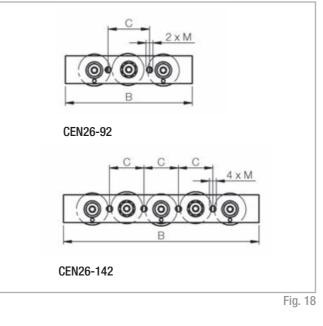
Special ROLLON 40.vc-sp01 screws

Rail size

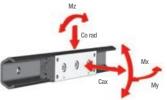

Dimensions from 160 mm to 2000 mm

Rail		Length L (mm)																						
codes	160	240	320	400	480	560	640	720	800	880	960	1040	1120	1200	1280	1360	1440	1520	1600	1680	1760	1840	1920	2000
TEN 26	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
TEN 30	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•
TEN 40			٠	•	•	٠	٠	•	٠	٠	٠	٠	٠	٠	•	٠	٠	•	٠	٠	٠	٠	•	•
UEN 40				0		0	0	0	0		•		0	•	•	•	•	0	0		0	0	0	•
• Available ir	n stock																						T	Tab. 3

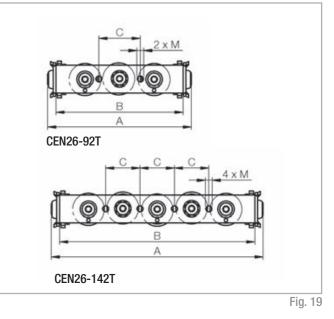
Dimensions from 2080 mm to 4000 mm


Rail		Length L (mm)																							
codes	2080	2160	2240	2320	2400	2480	2560	2640	2720	2800	2880	2960	3040	3120	3200	3280	3360	3440	3520	3600	3680	3760	3840	3920	4000
TEN 26	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	•
TEN 30	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
TEN 40	٠	٠	•	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	•	۰	٠	•	•	٠	•	۰	•	•
UEN 40	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	•	•	0	•		•
 Available i 	n stock																							1	Tab. 4

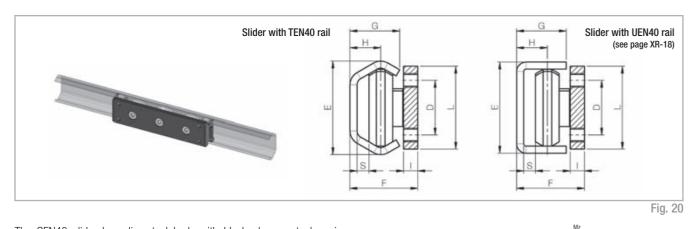
Version **Characteristics** Order codes Rolled steel rail with "ROLLON-NOX" nitride hardening, black oxidation, cut to size after treatment. The cut BASIC TEN40-1040 ends are protected with black spray paint. As base version, but with additional treatment "ROLLON e-coating" black electro painting on the entire surface, TEN40-1040-K Κ except on the inner raceway area, providing a high corrosion resistance, up to 700 hours in salty fog. The raceways are still protected by the standard oxidation and raceway lubrication. As base version, but with additional coloring "ROLLON p-color". CW is white-color version and CR is red-color TEN40-1040-CW CW o CR version, - on the entire surface, except on the inner raceway area, providing a high corrosion resistance, up to 700 hours in salty fog. The raceways are still protected by the standard oxidation and raceway lubrication. Tab. 5 CEN26 - CEN30 Sliders


The CEN26 - CEN30 sliders have slim steel body with black glossy cataphoresis painting for high corrosion resistance. Available in 3 and 5 rollers, with and without wipers.

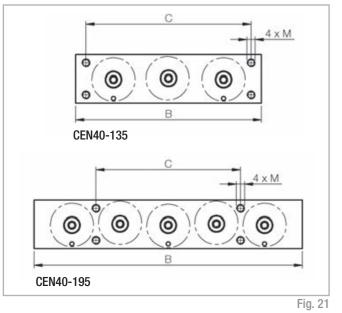
SLIDERS without wipers



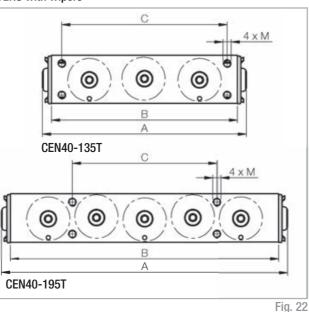
Е	F (mm)	G (mm)	н	S	I.	L	м	A	В	С	Weight	Dynamic		Lo	ad capac	ity			
(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(g)	C (N)	Co rad (N)	Co ax (N)	Mx (Nm)	My (Nm)	Mz (Nm)		
								-	00	20	100	1000	1100	200	0	0	16		
26	00	14	0.5	07	4	20	ME	104	92	30	110	1200	1120	300	3	9	10		
20	22	14	9,0	3,7	4	20	CIVI	-	140	05	140	1720	1500	540	5	15	45		
								154	142	20	150	1750	1520	540	5	15	40		
										-	00	20	120	1000	1000	400	4	10	17
20 E	10.0	15	10	0.0	4	20	ME	104	92	30	130	1300	1200	420	4	10	17		
29,0	19,9	10	10	٥,٥	4	20	CIVI	-	140	05	160	1020	1600	500	G	17	50		
								154	142	20	170	1030	1020	560	0	17	50		
	(mm) 26	(mm) (mm)	(mm) (mm) (mm) 26 22 14	(mm) (mm) (mm) (mm) 26 22 14 9,5	(mm) (mm) (mm) (mm) (mm) 26 22 14 9,5 3,7	(mm) (mm) (mm) (mm) (mm) (mm) 26 22 14 9,5 3,7 4	(mm) (mm) (mm) (mm) (mm) 26 22 14 9,5 3,7 4 20	(mm) (mm) (mm) (mm) (mm) (mm) (mm) 26 22 14 9,5 3,7 4 20 M5	(mm) (mm) <th< td=""><td>(mm) (mm) <th< td=""><td>(mm) (mm) (mm)</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></th<></td></th<>	(mm) (mm) <th< td=""><td>(mm) (mm) (mm)</td><td>$\begin{array}{ c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td><td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td></th<>	(mm) (mm)	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		


X-Rail

SLIDERS with wipers



CEN40 Sliders



The CEN40 slider has slim steel body with black glossy cataphoresis painting for high corrosion resistance. Available in 3 and 5 roller version, with and without wipers.

SLIDERS without wipers

SLIDERS with wipers

Codo	Tuno	Е	F	G	н	S	I.	L	М	А	в	С	D	Weight	Dynamic coefficient		Loa	d capa	city	
Code	Туре	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)		C (N)	Co rad (N)	Co ax (N)	Mx (Nm)	My (Nm)	Mz (Nm)
CEN40-135										-	135	120		430	2720	2400	820	10	25	50
CEN40-135T	TEN40	20.5	70 GE	21	13	5	6	35	M6	148	130	120	23	450	2720	2400	020	10	20	50
CEN40-195	I EIN40	39.0	20.00	21	15	0	0	30	IVIO	-	195	105	23	600	3670	3240	1150	18	42	125
CEN40-195T										208	190	100		620	3070	3240	1100	10	42	120
CEN40-135										-	135	120		430	1850	1850	0	0	0	34
CEN40-135T	UEN40	20 E	70 GE	21	13	5	6	35	M6	148	155	120	23	450	1000	1000	0	0	0	34
CEN40-195	UEIN4U	30.0	20.00	21	15	0	0	30	IVIO	-	195	105	23	600	2460	2460	0	0	0	84
CEN40-195T										208	190	105		620	2400	2400	0	0	0	04
																				Tab. 7

TEX inox rails

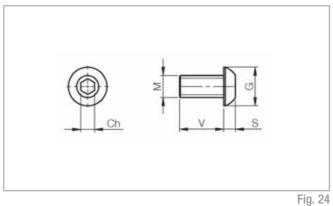
TEX rails

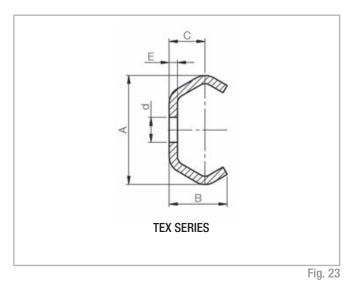
The TEX rails, with their CEX sliders and rollers, are made entirely of stainless steel. They offer a simple and practical solution for all applications where high corrosion resistance is required, in particular for food industry, chemical, pharmaceutical and medical industries.

For applications in severe marine environments is proposed the version with all parts electro polished (X-version) for extra high corrosion resistances. The product is easily washable for applications subject to frequent cleaning, does not release particles in the environment and is particularly indicated for cleanroom applications. Available in two sizes: 26 and 40 mm.

Fixing holes

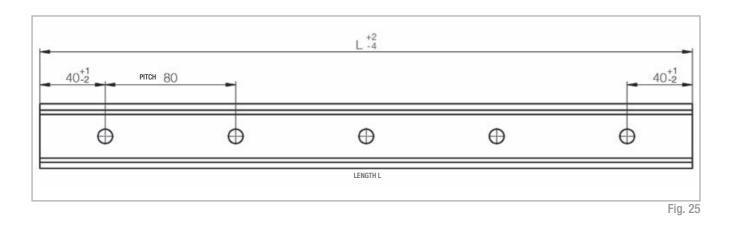
Rails have fixing pitch 80mm for standard INOX Button-head screws ISO 7380.


Reference code	A (mm)	B (mm)	C (mm)
TEX 26	26	14	9,5
TEX 40	39,5	21	13


Fixing screw dimensions

Reference code	KIT CODE (100 pz)	Screw type	М	V	G	S	Ch	Tightening torque
TEX 26	KIT-40.VB-E.0510.ZB	M5X10 (ISO 7380)	M5	10	9,5	2,7	3	
TEX 40	KIT-40.VB-E.0810.ZB	M8X10 (ISO 7380)	M8	10	14	4,3	5	
T1	Part - Million Marchael Inc. Inc							Tab 0

The screws are not supplied with rails, can be bought separately.

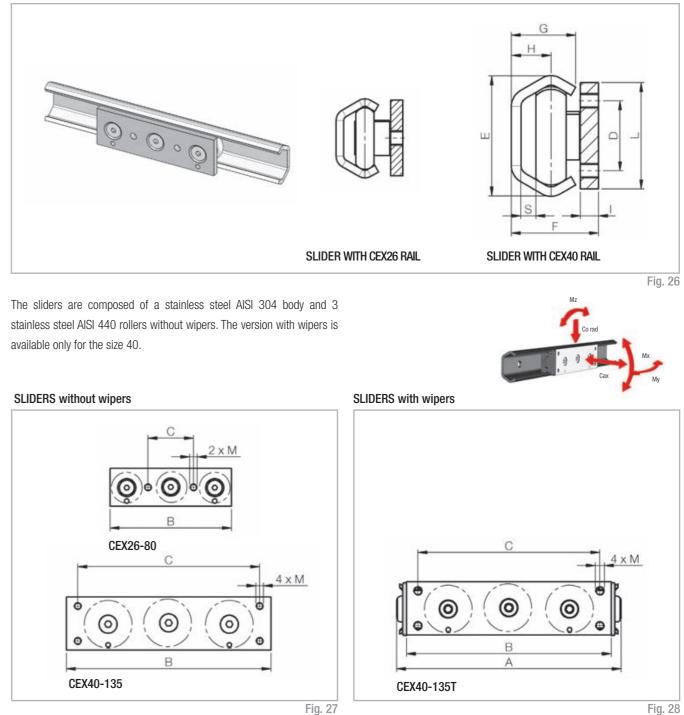

Inox screws standard iso 7380

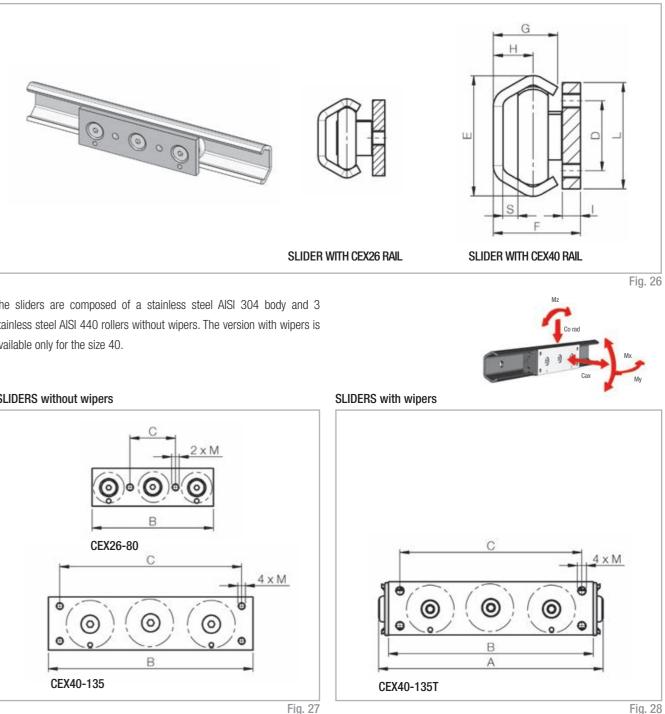
d (mm)	E (mm)	Screw type standard	WEIGHT (kg)
6,5	2,5	M5 (ISO 7380)	0,80
9	3	M8 (ISO 7380)	1,55
			Tab 0

Tab. 8

Rail size

Dimensions from 160 mm to 2000 mm


Rail											L	ength	L (mn	n)										
codes	160	240	320	400	480	560	640	720	800	880	960	1040	1120	1200	1280	1360	1440	1520	1600	1680	1760	1840	1920	2000
TEX 26	•	•	۰	•	•	•	•	•	•	•	۰	٠	٠	٠	۰	۰	•	۰	•	•	•	•	•	•
TEX 40			•			•	•	•	•	•	۰	٠	٠	•	٠	•	•	•	•	•	•	•	•	•
Available in	1 stock																						Ta	ıb. 10


Dimensions from 2080 mm to 4000 mm

Rail												Leng	<mark>,th L (</mark>	mm)											
Rail codes	2080	2160	2240	2320	2400	2480	2560	2640	2720	2800	2880	2960	3040	3120	3200	3280	3360	3440	3520	3600	3680	3760	3840	3920	4000
TEX 26	٠	٠	•	٠	٠	٠	٠	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	•	٠	•	٠	٠	•
TEX 40	٠	•					•		•				•						•	•		•	•		•
 Available in 	n stock																							Та	b. 11

Order codes	Version	Characteristics	
TEX40-1040	BASIC	Profiled rail, INOX AISI 304	
TEX40-1040-X	Х	As base rail but with electro polished after cutting to size. Tested to 1000 hours in salty fog.	
			Tab. 12

CEX sliders

Code	E	F	G	Н	S	I	L	М	А	В	С	D	Weight		Lo	ad capac	ity	
Coue	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(g)	Co rad (N)	Co ax (N)	Mx (Nm)	My (Nm)	Mz (Nm)
CEX26-80	26	22	14	9,5	3,7	4	20	M5	-	80	30	-	95	800	400	3	9	12
CEX40-135	20 E	00 CE	01	10	F	C	25	MC	-	105	100	00	430	1600	800	9	23	32
CEX40-135T	39,5	28,65	21	13	5	6	35	M6	148	135	120	23	450	1600	800	9	23	32
All sliders are also	available	in a fully	electro-p	olished	version. F	or the or	der code	add suff	ix-X (eg (CEX40-1	35-X)							Tab. 13

TES rails

TES rails

The TES rails with its CES sliders are made of zinc plated steel, while the rollers are hardened bearing steel. They offer a simple and economical solution for a wide range applications, where high frequency is not required.

The compact overall dimensions, the internal protected raceways, the ease of assembly and the good ratio of load capacity /size make this product a winning choice compared to other self-built or available solutions on the market. The rails are available in two dimensions : 26 and 40 mm.

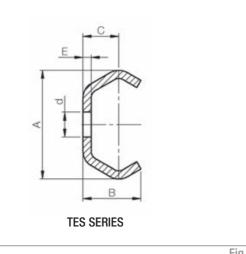
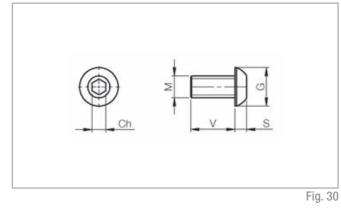
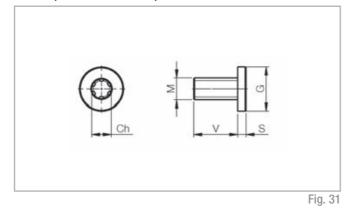
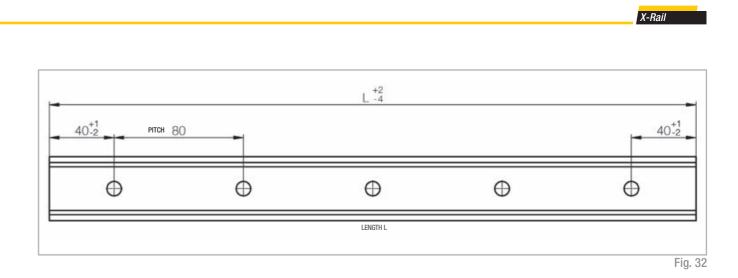


Fig. 29


Reference code	A (mm)	B (mm)	C (mm)	d (mm)	E (mm)	Screw type standard	WEIGHT (kg)
TES 26	26	14	9,5	6,5	2,5	M5 (ISO 7380)	0,80
TES 40	39,5	21	13	9	3	M8 (ISO 7380)	1,55
							Tab. 14

Fixing screw dimensions


Reference code	KIT CODE (100 pz)	Screw type	М	v	G	S	Ch	Tightening torque
TES 26	KIT-40.VB-E.0510.ZB	M5X10 (ISO 7380)	M5	10	9,5	2,7	3	9 Nm
163 20	KIT-40.VC-SP01.0510.ZB	M5X10 (TORX)	M5	10	10	2	T25	10Nm
	KIT-40.VB-E.0810.ZB	M8X10 (ISO 7380)	M8	10	14	4.3	5	20Nm
TES 40	KIT-40.VC-SP01.0816.ZB	M8X16 (TORX)	M8	16	16	3	T40	20Nm
	KIT-40.VC-SP01.0812.ZB	M8X12 (TORX)	M8	12	16	3	T40	20Nm
Screws are not supplied v	whit the rails							Tab. 15


suppii

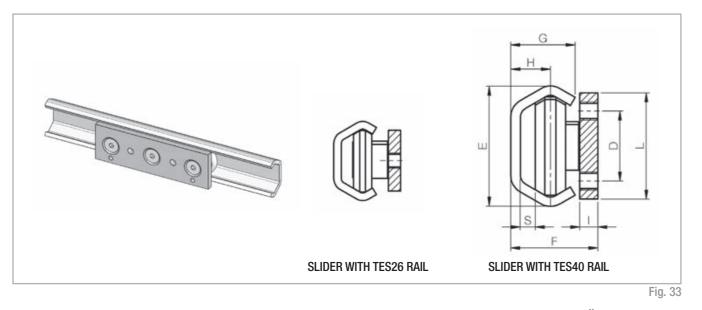
Screws standard iso 7380

Screws special ROLLON 40.vc-sp01.

Rail size

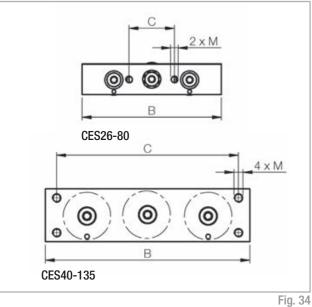
Dimensions from 160 mm to 2000 mm

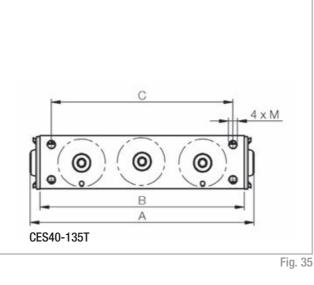
Rail											L	ength	<mark>L (m</mark> n	n)										
codes	160	240	320	400	480	560	640	720	800	880	960	1040	1120	1200	1280	1360	1440	1520	1600	1680	1760	1840	1920	2000
TES 26	٠	•	٠	٠	•	•	•	٠	•	٠	٠	٠	٠	•	٠	٠	٠	•	•	٠	•	٠	٠	•
TES 40						•	•	•	•		٠	٠	٠	•	•		•	•	•		•	٠		•
• Available ir	n stock																						Та	h 16


Dimensions from 2080 mm to 4000 mm

Rail												Leng	<mark>yth L (</mark>	mm)											
Rail codes	2080	2160	2240	2320	2400	2480	2560	2640	2720	2800	2880	2960	3040	3120	3200	3280	3360	3440	3520	3600	3680	3760	3840	3920	4000
TES 26	٠	۰	•	۰	٠	۰	۰	٠	۰	۰	٠	٠	٠	٠	۰	۰	۰	٠	•	•	٠	•	•	۰	•
TES 40	•	•	•	•	٠	•	•	٠	•	•	•	•	٠	٠	٠	•	٠	٠	•	•	٠	•	•	•	•
 Available in 	n stock																							Та	b. 17

Order codes	Version	Characteristics
TES40-1040	BASIC	Rolled formed steel, zinc plated, v

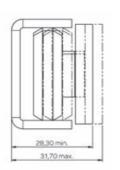

with the rails ends with protective zinc-spray after cutting to size.

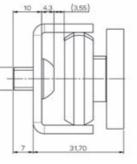

CES sliders >

The sliders CES26 for the rail TES26 feature a zinc plated steel body with two fixing holes. With the rails TES40 can be used the sliders CEN40-135 indicated on page XR-10 that have a body with black color surface treatment.

Codo	Е	F	G	н	S	1	L	м	А	в	С	D	Weight		Lo	ad capac	ity	
Code	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(g)	Co rad (N)	Co ax (N)	Mx (Nm)	My (Nm)	Mz (Nm)
CES26-80	26	22	14	9,5	3,7	4	20	M5	-	80	30	-	95	800	400	3	9	12
CES40-135	<u>оо г</u>	00.05	01	10	F	C	05	MC	-	105	100	00	430	1600	800	9	23	32
CES40-135T	39.5	28.65	21	13	5	6	35	M6	148	135	120	23	450	1600	800	9	23	32
																		Tab. 19

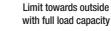
TEN40+UEN40 self-aligning system

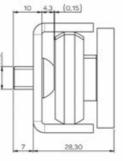

In two-slide linear motion systems, one TEN40 rail can be combined with one UEN40 rail, with CEN40 sliders in both rails. This combination creates a self-aligning system capable of tolerating alignment errors of up to 3.4 mm.


The slider in the TEN40 guiding rail is rigidly connected, via the mobile element, to the sliders in the UEN40 floating rail on the other side. The TEN40 guiding rail ensures play-free linear motion. The slider in the UEN40 floating rail is therefore also play-free but able to move axially across the flat raceways. This system avoids overload on the sliders as the result of rail alignment error.

The limit of axial movement of CEN40 sliders towards the inside of UEN40 rails is determined by the size of the heads of the rail fixing screws (see figures below). In particular, ROLLON's special flat head DIN 7991 screws permit approximately 1 mm of extra axial movement compared to standard ISO 7380 screws.

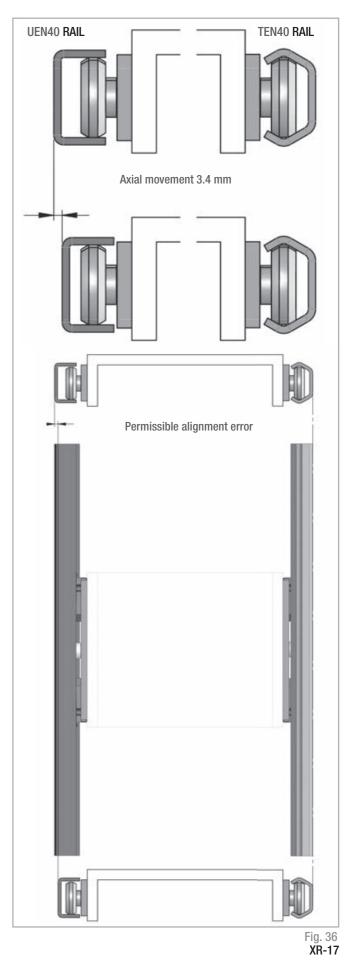
The limit of axial movement towards the outside of the UEN40 rail is determined by the point of departure of the roller from the raceway. The limit specified in the catalogue guarantees sufficient contact between rollers and raceway to support rated load.


Sliders in UEN40 rails offer less load capacity than the same sliders in TEN40 rails.



1.45

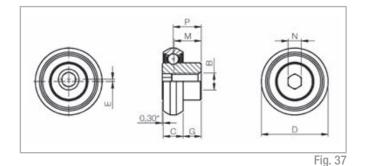
Min - Max axial movement



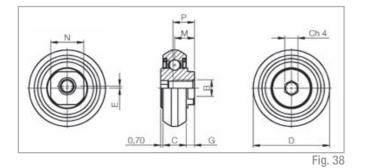
Limit towards inside of rail with standard ISO 7380 screws

Limit towards inside of rail with TORX DIN 7991 screws

SLIDERS without wipers


Rollers for TEN and UEN series rails

As an alternative to our standard 3 and 5-roller sliders, rollers for TEN and UEN rails can also be mounted on custom sliders or directly on the mobile element. In such cases, the number, arrangement and types of roller need to be chosen to match the requirements of the application.


All rollers are made from core tempered and precision ground bearing grade carbon steel. Rollers are of the single row ball bearing type, with the balls held in place by a metal cage. Precision ground surfaces ensure a smooth, silent rolling action. Rollers are also fitted with 2Z rated metal shields to protect the ball bearings raceway and ensure good resistance to high temperatures. The ball bearing is lubricated for life with a wide

temperature ranging lithium soap grease. The mounting axle is made in one piece with the inner bearing, for maximum strength. Rollers come in two types: eccentric and concentric.

PEN and PCN series rollers for size 26 and 40 rails have a hexagonal recess for an Allen key in the side opposite the threaded fixing hole. This serves to hold the axle steady while the fixing screw is being tightened with a second Allen key. On eccentric rollers, it also serves to adjust roller position, so as to reach the desired preload setting. Rollers for size 30 rails have a special central square pivot accessible with a flat key, inserted between slider body and eccentric rollers. The flat key is supplied by ROLLON.

Roller		Rail	Е	D	С	м	G	Р	N (K	ley)	В	Weight	Dynamic	Load c	apacity
code	Туре	type		_				(mm)	Key	N (mm)	(mm)	(g)	load factor C (N)	Co _{rad} (N)	Co _{ax} (N)
PCN26	concentric	т	-	20,2	6	0 5	5,5	8,2		4	M5	13	640	560	126
PEN26	eccentric	I	0,6	20,2	0	8,5	0,0	0,2	4	4	CIVI	15	640	560	126
PCN40	concentric	т	-										1360	1200	410
PEN40	eccentric	I	0,7	01 5	10	0.65	1.65	10	•	5	MG	48	1360	1200	410
PCN40	concentric		-	31,5	10	9,65	4,65	10	5	5	M6	40	910	800	0
PEN40	eccentric	U	0,7										910	800	0
															Tab. 20

Roller	Tuno	Е	D	С	м	G	Р	N (Ke	ey)	В	Weight	Dynamic	Load ca	apacity
code	Туре	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Кеу	N (mm)	(mm)	(g)	load factor C (N)	Co _{rad} (N)	Co _{ax} (N)
PCN30	concentric	-	00.45	7	6	25	6 F		10	10 M5	M5 20	2400	1000	250
PEN30	eccentric	0,6	23,15	1	6	2,5	6,5	KLM28	10	CIVI		2400	1000	250
														Tab. 21

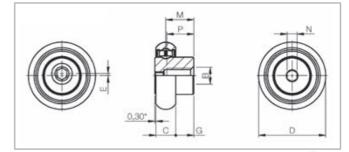
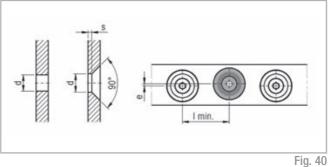



Fig. 39

Roller		E D		Е	Е	Е	С	м	G	Р	N (ł	(ey)	В	Weight	Dynamic	Load ca	apacity			
code	Туре	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Кеу	N (mm)	(mm)	(g)	load factor C (N)	Co _{rad} (N)	Co _{ax} (N)						
PCX26	concentric	-	20.2	20,3 6	8,5	5,5	8,2		4	M5	13	900	400	148						
PEX26	eccentric	0,6	20,3					4				900	40	148						
PCX40	concentric	-	31,5 10	10	9,65	0.05	0.05	0.05	0.05	0.05	0.05	4 CE	10	•	F	MC	40	1800	800	296
PEX40	eccentric	0,7				4,65	10	5	5	M6	48	1800	800	296						
														Tab. 22						

Drilling of roller supports

Roller type	d (mm) Diameter of fixing screw hole	s (mm) Length of hole	e (mm) Hole alignment error
26	5 ⁰ -0,1	1	0,2
30	5 ⁰ -0,1	1	0,2
40	6 ⁰ -0,1	1,5	0,4

I _{min} (mm) recommended centre to centre distance							
22							
25							
34							
Tab. 23							

Lubrication and use of wipers

All sliders are supplied complete with wipers containing a synthetic felt soaked in lubricating oil, which release a thin lubricating film on the raceways for long period of proper operation. The period of self-lubrication depends on conditions of use and level of environmental pollution.

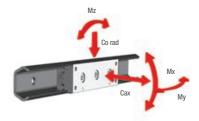
In most normal conditions, the self-lubricating wipers can last up to 1000 km. They can be easily replaced with a replacement kit of 10 wipers. The rollers are lubricated for life with grease lithium soaps and with 2RS or 2Z lateral seals.

Correct lubrication is very important to ensure a long lifetime. For applications with high frequency is recommended to clean and re-grease the rail's raceways periodically every year or every 200,000 cycles ,depending on the operation environment.

We recommend using high pressure grease fat class NLGI2(ISO2137)

Kit code	Rail reference	Slider reference
KIT-KT-LA26	TEN26	CEN26
KIT-KT-LA30	TEN30	CEN30
KIT-KT-LA40	TEN40 TEX40 TES40	CEN40 CEX40 CES40
		Tab. 24

Every kit is composed of 10 single wipers.


Sizing verification

After identifying the most appropriate positioning of rails and sliders, or LOAD DIRECTION eventually the single rollers, it is necessary to verify the proper sizing of the linear components. This both from a static point of view and in accordance to the expected life-time. For the static verification it is necessary to determine the load on each slider or roller, to identify the most stressed one, and then to verify the values of the safety coefficients, while comparing with the max. nominal load capacities. When the applied load is a combination of loads; radial and/or axial loads and moments, it is necessary to determine the value of each factor and verify that:

Pax	=	axial load component
Prad	=	radial load component
Mex, Mey, Mez	=	applied moments
Co ax	=	axial load capacity
Co rad	=	radial load capacity
Mx, My, Mz	=	resistance capacity to moments
Z	=	safety coefficient $> = 1$

Fig. 42

NOTE: Co rad, the radial load capacity for the sliders is to be understood only indirection shown on the slider body with two circular imprints.

It is recommended to apply the following values to safety coefficient Z:

Z	Application conditions
1-1,5	Accurate determination of static and dynamic loads. Precise assembly, tight structure.
1,5-2	Avarage conditions
2-3,5	Insufficient determination of applied loads. Vibrations, loose structure. Imprecise assembly. Unfavourable invironmental conditions.

Theoretical lifetime calculation

The theoretical life of rollers and raceways should be determined by the conventional formula as indicated below in km of running. However, it should be kept in mind, that the value thus calculated must be taken with caution just for orientation. In fact, the real service life achieved can be very different from that calculated value, because the phenomena of wear and fatigue are caused by factors not easy to predetermine, for example:

- Inaccuracy in the estimation of the real loading condition
- Overloading for inaccuracies assembly
- Vibration, shock and dynamic pulse stress
- Raceways status of lubrication

L (Km)= 100 •
$$(\frac{C}{P} \cdot \frac{fc}{fi} \cdot fh)^3$$

Fig. 43

- C = Dynamic load coefficient of slider
- P = The equivalent load applied on the most stressed slider

fh = takes into 1 the structure 1	nt depending on the actual stroke length. This factor o account applications with short stroke. With value oke is superior to 2m, with shorter stroke the value efer to "Coefficient fh" graphic.
fc = rail pass	nt depending on the number of sliders in the same ing the same raceway point. Refer to the table r suggested values
TI =	nt taking into account operational ambient I of correct lubrication of raceways
	Fig. 4

Number of sliders	1	2	3	4
f _c	1	0.8	0.7	0.63
				Tab. 26

- Thermal excursions
- Environmental pollution and dust
- Damage mounting
- Stroke length and frequency of movement

The equivalent load applied on the most stressed slider = P, is determined by the formula:

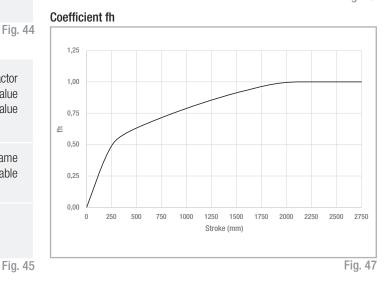



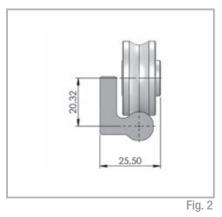
Fig. 46

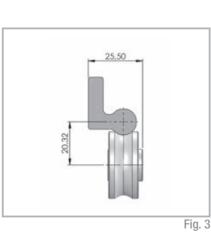
The correction factors fc and fi applied to the theoretical calculation formula have the sole purpose of guiding the designer qualitatively on the influence in the lifetime estimation of the real application conditions without any pretense of precision. For more details please contact Rollon's Technical department

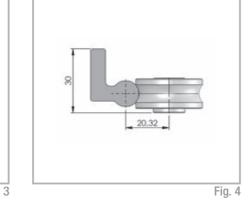
fi	Application conditions
1-1.5	Good lubrication and wipers mounted – No impurities on raceways – Correct installation.
1.5-2	Normal dusty factory ambient, some vibrations, temperature changes, no wipers.
2-3.5	Poor Lubrication, dusty ambient, vibrations, high temperature changes, no wiper.

0-Rail

Product explanation \mathbf{V}


"0-Rail - unique assembly possibilities"

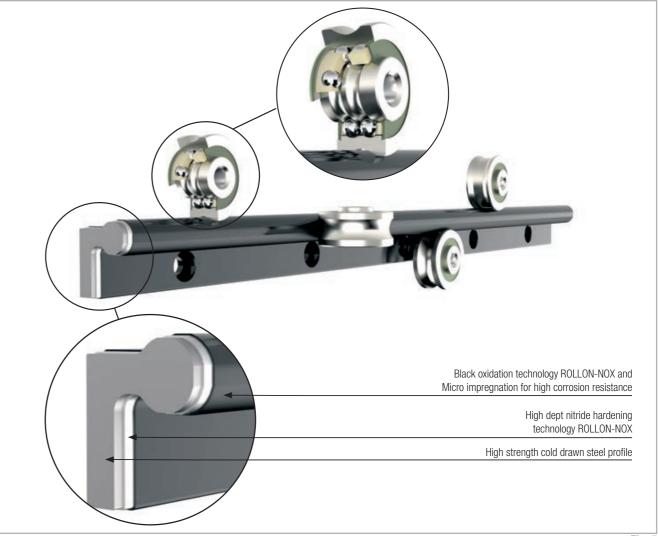



The roller linear system O-Rail offers the maximum flexibility configuration due to the original shape of the guide with 3 raceways arranged at 90 ° to larger handling and automation applications. It is an easy to assemble each other where on each of those can slide rollers R..43G series. Using a single guide, two, or more parallel guides, gives rise to a number of combinations capable of satisfying each specific need for linear motion and offering exceptional self-alignment capacity. O-Rail is constructed in high strength steel hardened with hardening treatments, for a further improvement of both performance and durability.

O-Rail is designed to be a strong and simple multitask linear system for system, that offers smooth motion even on inaccurate surfaces.

FXRG series

General characteristics


New GEOMETRICAL DESIGN of the contact areas, based on Gothic arch raceways

 \mathbf{v}

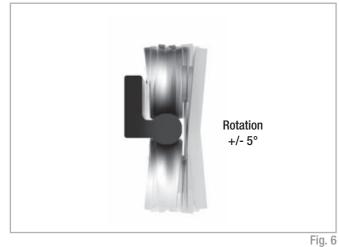
- Superior sliding
- Very low friction
- Long lifetime
- Greater load capacity
- Very compact design

New rollers, double row bearings, with increased thickness of outer ring, gothic profile and finished raceways.

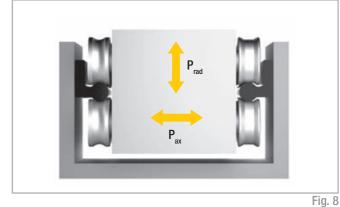
- Increased load capacity
- Increased lifetime
- Extremely low noise
- High speed
- Lubricated with low-temperature grease
- Temperature range -40 ° to + 130 ° c
- Neoprene lateral seals for dust protection

Self-aligning system when using two parallel rails, compensating large assembly inaccuracies on both longitudinal and transversal plane.

- allow for installation on non precise structures welded carpentery or aluminium frame structures
- Do not require machined fixing surfaces for installation. Cost saving, as easy and fast assembly


Patented process ROLLON-NOX, to further improve the rail material and thermochemical hardening treatment of deep nitriding and post-oxidation black for an effective corrosion protection.

- Very high hardness
- Resistance to heavy loads
- Very low wear
- Effective corrosion protection
- Smooth black finish

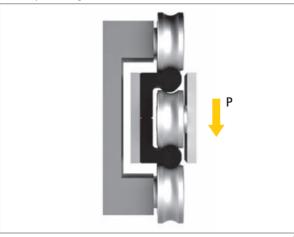
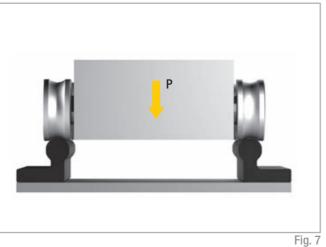

Configurations

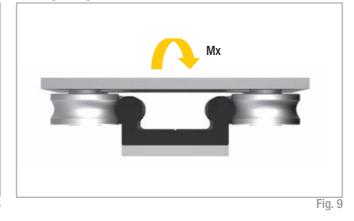
The FXRG allows a wide range of configurations when using two or more rails in parallel. Depending on required load and moment capacities/ direction more single rollers and standard sliders are used to obtain

FXRG with guiding slider with limited rotational capacity

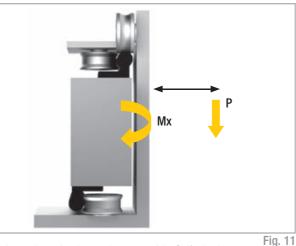
Configuration with two parallel FXRG with self-aligning capacity

Telescopic configuration

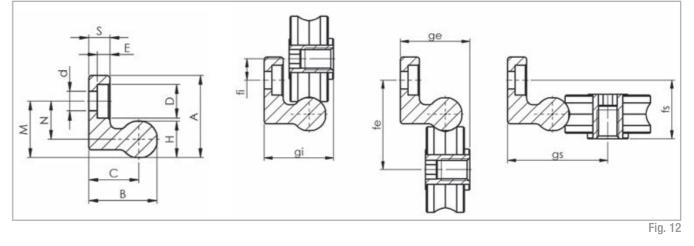

Fig. 10 Composed of two FXRG rails with rollers in between the rails fixed to mobile part and rollers on fixed structure running on outer raceways, providing a customized solutions for telescopic movements.

unique Self-aligning systems. Contact ROLLON for eventual support in dimensioning customized systems .


Combination of two FXRG with resting load

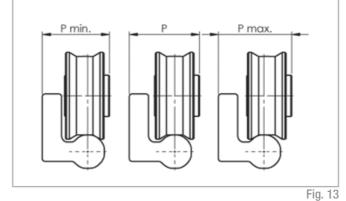
Configuration with two FXRG to form a single rail with a slider allowing for high Mx moments

Configuration of two FXRG


With high cantilever load capacity, meanwhile Self-aligning.

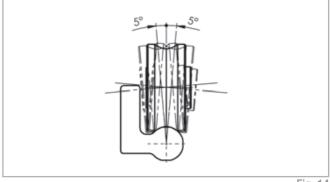
Dimensions and load capacity

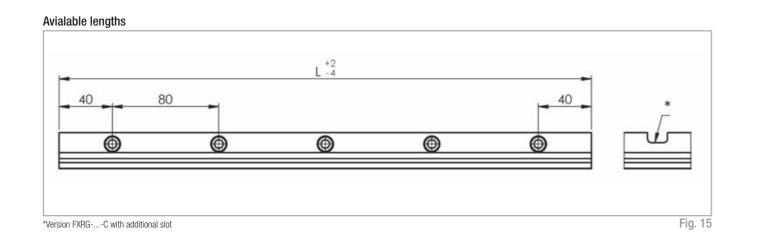
FXRG series


FXRG is a high precision cold drawn profile of high strength steel. After
a high depth nitride hardening treatment the rails are oxidized, assuring
high hardness and excellent corrosion resistance. The characteristic black
color on the whole rail is the result of oxidation and subsequent processof micro-impregnation with oils and substances for improved smoothness
and long life. The fixing holes are for standard M6 cylindrical low head
screws, DIN 7984, with 80mm pitch .

Position of guiding roller - Concentric RCV43G on the three raceways

Code	A (mm)	B (mm)	S (mm)	H (mm)	C (mm)	d (mm)	D (mm)	E (mm)	Screw type	M (mm)	N (mm)	Weight (g)
FXRG	27,02	22,52	7,00	12,04	16,50	6,50	11,00	4,20	M6 DIN 7984	18,52	12,50	2,48
												Tab. 1


Axial movement of floating roller R.P43G with FXRG


V

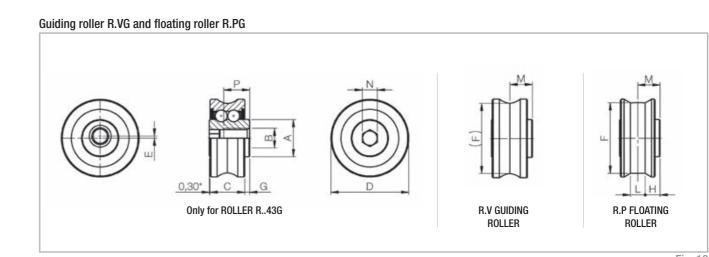
Rotation of guiding roller R.V43G on FXRG

fi (mm)	gi (mm)	fe (mm)	ge (mm)	fs (mm)	gs (mm)
7,82	25,50	32,82	25,50	21,50	36,82
					Tab. 3
					0R-5

3 Dimensions and load capacity

Dimensions from 400 mm to 2000 mm

Rail	Length L (mm)																							
codes	160	240	320	400	480	560	640	720	800	880	960	1040	1120	1200	1280	1360	1440	1520	1600	1680	1760	1840	1920	2000
FXRG				٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•
• Available i	n stock																							Tab. 4

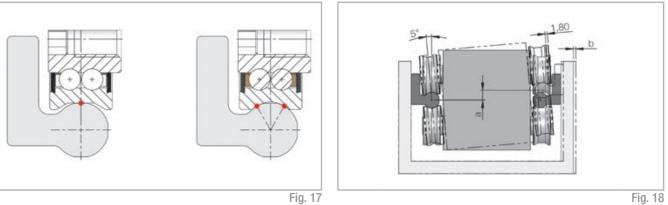

Dimensions from 2080 mm to 4000 mm

Rail	Length L (mm)																								
Rail codes	2080	2160	2240	2320	2400	2480	2560	2640	2720	2800	2880	2960	3040	3120	3200	3280	3360	3440	3520	3600	3680	3760	3840	3920	4000
FXRG	•		٠	•			٠	•	۰	٠	٠	٠	•	٠	٠	•	•	•	٠	•	٠	•		•	•
 Available ir 	n stock																							1	Tab. 5

Order codes	Version	Characteristics
FXRG-1040	BASIC	Cold drawn profile with high depth nitrade hardening "ROLLON-NOX", oxidation with micro oil impregnation. Ends are cut to size after treatments and sprayed with protective black paint.
		Tab

Tab. 6

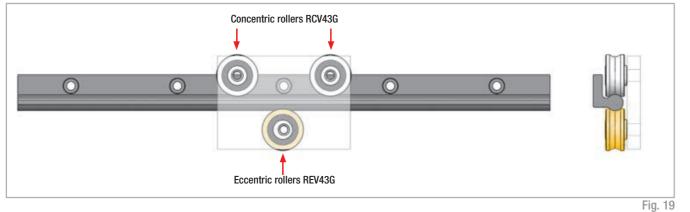
Rollers for FXRG >



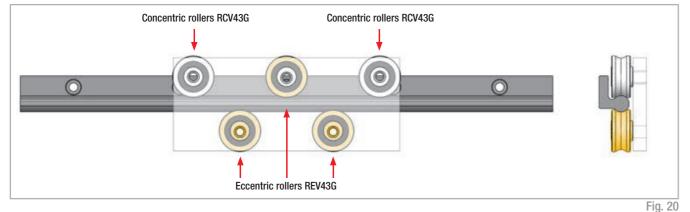
Roller			Е	D	С	м	G	N	А	В	р	F		н	Weight	Dynamic	Load capacity	
code	Туре	Versions	(mm)	(mm)		(mm)	(mm)	chi- ave	(mm)		(mm)	(mm)	(mm)	(mm)	(g)	coefficient C (N)	Co _{rad} (N)	Co _{ax} (N)
RCV43G	Concentrie	GUIDING		31,4								-	-	-		7600	4000	1190
RCP43G	Concentric	FLOATING	-	31,5	14	0	0	C		MO	10 F	28,59	6	6	50	7600	4000	0
REV43G	Feeentrie	GUIDING	0.0	31,4	14	9	2	6	15	M8	10,5	-	-	-	50	7600	4000	1190
REP43G	Eccentric	FLOATING	0,8	31,5								28,59	6	6		7600	4000	0
																		Tab. 7

Self-aligning combinations

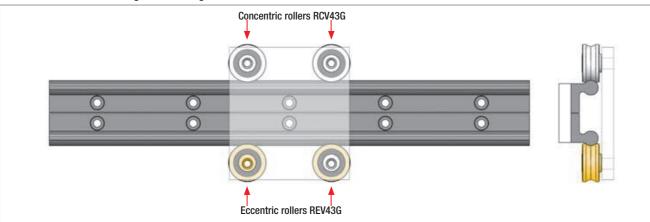
When FXRG rails are used in parallel, the use of floating rollers R.P43G rotate slightly around the longitudinal axis of about +/- 5 °. Combined with and guiding rollers R.V43G provides a Self-aligning system, capable of floating rollers R.P43G on a parallel rail, such system can compensate an compensating greate inaccuracies of structure or assembly errors. The axial displacement of +/- 1 mm , in addition to a max. rotation of +/- 5 °. guiding rollers R.V43G in contact with the FXRG's gothic raceways assure precise guiding while compensating misalignment, as they are able to


The combination effect of both rotation and lateral movement, allow two parallel rails to compensate for misalignment on both a) and b) level.

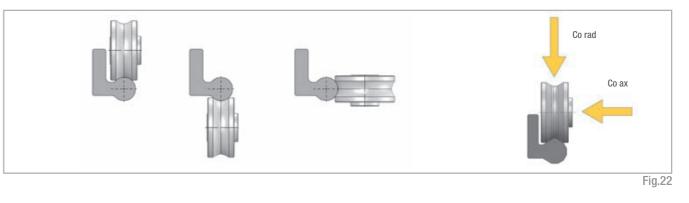
Mounting configurations >


The concentric rollers should be positioned in the direction of radial loading. Warning! A single slider configuration will rotate +/- 5° around the longitudinal axis of a single FXRG rail, not able to take any Mx moments.

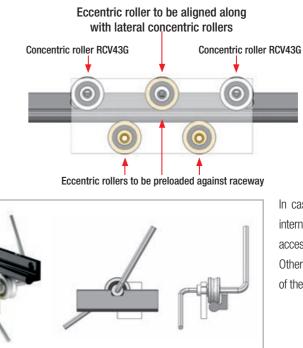
Single rail with 3 rollers slider



It is recommended, when more than two rollers are on the same track with max. radial load, to use only two concentric rollers (as from example figure). The others should be eccentric. For cases with a wider distance between concentric rollers, please contact ROLLON's Technical departement for dimensioning.


Single rail with 5 rollers slider

Double rail with slider for high overturning moments



The rollers need to be positioned on the rail in numbers and directions according to the prevailing load. It is always preferable to orient the rollers so that the prevailing load acts radially, due to higher radial load capacity.

The rollers must be fixed on a metal surface not yielding, perfectly flat and The preload adjustment can also be carried out by checking the force Fi of insertion of the movable part, in which the rollers are fixed into the rail. with its fixing screws, applying a locking torque of 22 Nm. The tightening of the fixing-screw is to be performed, while holding the In general for a good Fi adjustment, the inserting friction must be between roller firm with an Allen-wrench, present on the opposite side of the 2-10 N. To increase or decrease the Fi act on eccentric rollers, opposite to fixing thread. In case eccentric rollers, it is advisable to use a cup-spring the load direction (see figure below).

washer under the screw-head to obtain a firm movement, able to maintain the roller "firm" against the surface and facilitate minor adjustment of eccentric roller, before the final locking.

In case required to have eccentric rollers on the internal rail side, it is necessary to include optional accesses, to allow Allen-key to reach the roller. Otherwise the adjustment can take place outside of the rail.

Product explanation

Telerace roller telescopic slides

The Telerace family is composed of telescopic roller slides made of sheet steel of particular precision finish, fully hardened using high depth nitride hardened rails with black oxidation. This treatment assures long lifetime without wear and a good corrosion resistance. Telerace roller slides are suitable for harsh ambient environment, since the rollers are much less sensitive than ball-cage slides. TLR and TLQ series represent the high performance telescopic slides. TLN and TQN offer many of the technological advantages with a more simplified construction, TLAX and TQAX are completely made of stainless steel. The listed load capacities are per pair of slides, with the load centred. In case the load is not centred, the load capacity is reduced.

TLR-TLQ series

TLR and TLQ series represent the high performance telescopic slides. Top features like hardened and honed raceways, strong double row ball bearings, wipers with incorporated pre-oiled felt and robust rubber stoppers make them ideal for all kinds of industrial high frequency applications, including variable and vertical stroke.

TLN-TQN series

The roller telescopic slides TLN and TQN offer many of the technological advantages from the top-range slides, like hardened raceways and robust rubber stoppers, but with a more simplified construction to offer a range of cost-effective roller telescopic slides with good load capacities for industrial applications. All models are available in K-version, for higher corrosion resistance, and with other optional surfaces treatments.

TLAX-TQAX series

The complete INOX slides TLAX and TQAX are available in X-version with rails and intermediate S-element electro-polished for very high corrosion resistance, making them ideal for most critical outdoor applications.

Industrial automation

Telerace slides are especially recommended for high frequency applications, where long service requirements and low maintenance are necessary. Roller telescopic slides are superior for motorized automation with or without variable stroke-cycles, to eliminate the typical problem of ball cage creeping that subsequently can cause serious motor jammingproblems, when increased motor power is instantly required to reposition the ball cage. The materials and surface treatments assure high corrosion resistance, and with the additional treatments Telerace slides become suitable for outdoor applications or very humid ambient.

The most important characteristics:

- High load capacity
- Limited flexion
- Suitable for harsh environmental conditions
- Corrosion resistance
- Strong stoppers for smooth movement
- Compactness
- Smooth and friction-less extension
- Suitable for continuous movement
- Long life without wear

TLR

TLR series provides excellent smooth and play-free running performance, along with high load capacities and low flexion. Good cleaning, proper lubrication and reduced maintenance thanks to pre-oiled felts on the strong wipers. When TLR series slides are used in pairs, they offer the possibility to absorb minor misalignment errors.

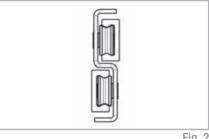
TLQ

TLQ series are very compact slides with a square cross section that offer good load capacities, both axial and radial, and are particularly suitable for vertical applications, thanks to their compactness and light weight. TLQ series is composed of two single rails fixed together to form a rigid H-profile as an intermediate element. As TLR series, TLQ series features double row bearings. Possible customised stroke.

TLN

TLN series features an innovative constructive design that combines cost-effective rails with advanced technology. The hardened rails assembled to a rigid intermediate S-shaped element provide excellent smooth and play-free running performance, along with high load capacities and low flexion. Also available the HP version with additional rollers to increase the load capacity, about 40-50% more, with no change in external dimensions.

TQN


TQN series are very compact slides with a square cross section that offer good load capacities, both axial and radial, and are particularly suitable for vertical applications, thanks to their compactness and light weight. TQN series is composed of two single rails fixed together to form a rigid H-profile as an intermediate element. As TLN series, TQN series features single row bearings. Possible customised stroke.

TLAX

TLAX series are made of AISI 304 rails and AISI 404 hardened steel rollers, with 2RS seals and lubricated for life with grease for longevity and low temperature applications. TLAX is ideal for medical, pharmaceutical, chemical, medical industries or maritime ambient. For very severe environmental conditions, TLAX can be supplied in X-version, which provides an improved corrosion resistance. Customized versions with longer extension, length and stroke are available upon request.

TQAX

TQAX series are very compact stainless-steel slides with a square cross section that offer good load capacities, both axial and radial, and are particularly suitable for vertical applications, thanks to their compactness and light weight. TQAX series is composed of two single rails fixed together to form a rigid H-profile as an intermediate element. Rails are in AISI 304 and single row bearings in hardened AISI 440 with 2RS seals and lifetime lubricated.

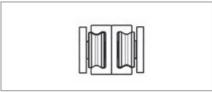
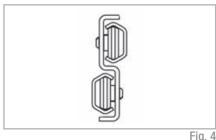
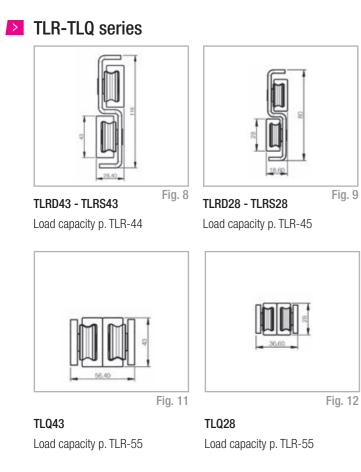
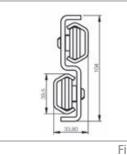
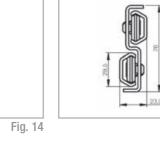




Fig. 3





TLN-TQN series

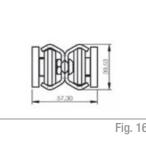


Fig. 10

Fig. 13

TLRD18 - TLRS18

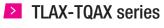
TLQ18FF

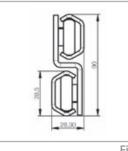
Load capacity p. TLR-54

Load capacity p. TLR-44

ШШ 29.40

TLND40 - TLNS40 Load capacity p. TLR-48


TQN40 Load capacity p. TLR-58


Fig. 15

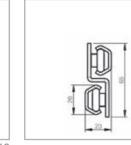

TQN30 Load capacity p. TLR-58

Fig. 17

Fig. 21

Load capacity p. TLR-51

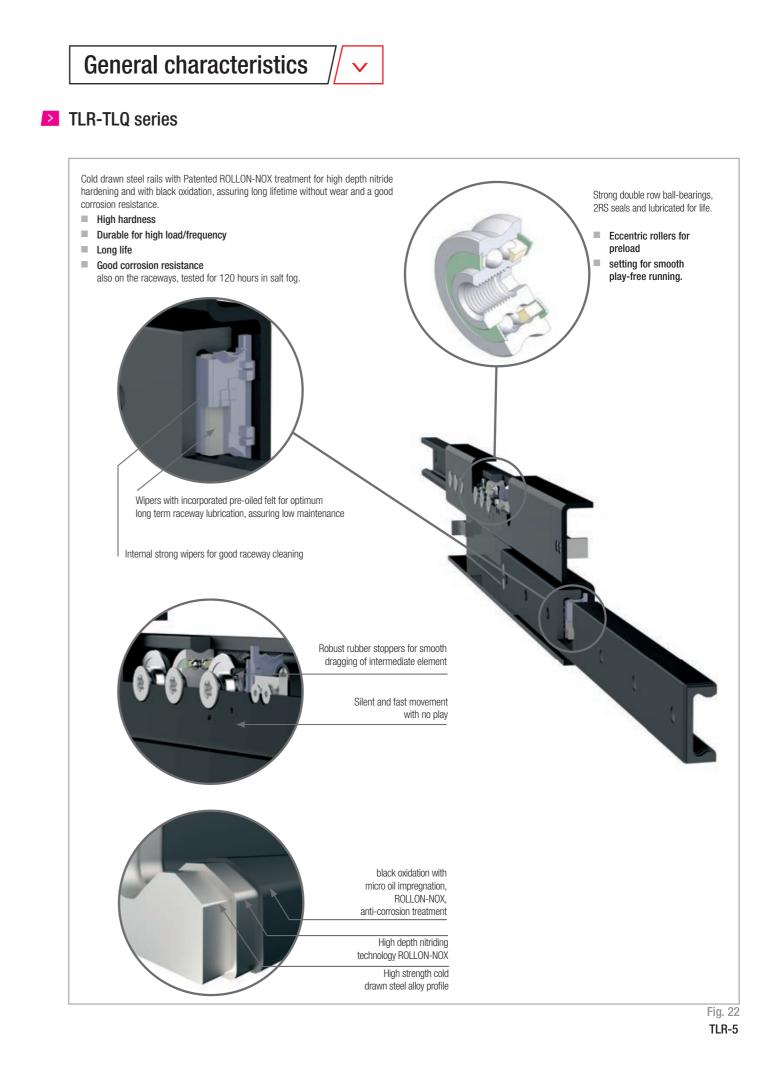
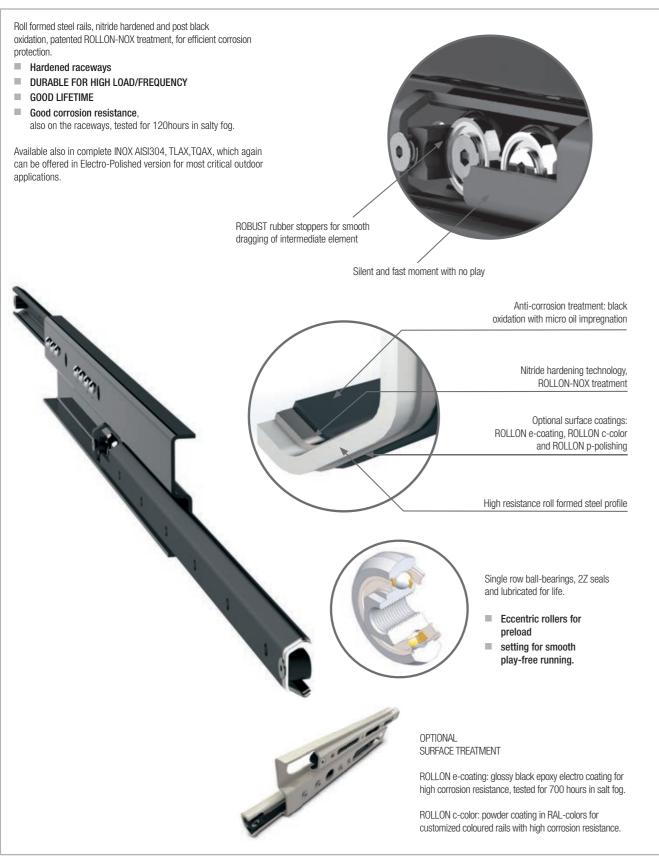
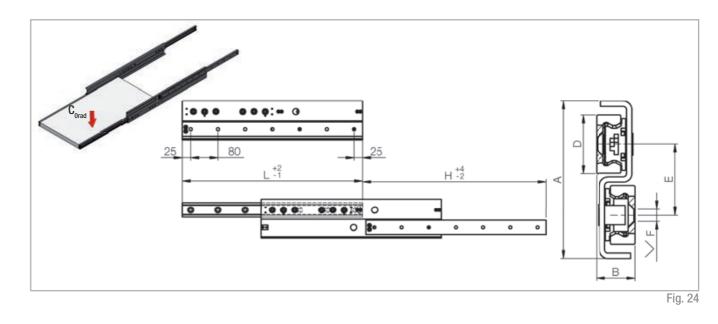

TLAX26 Load capacity p. TLR-51

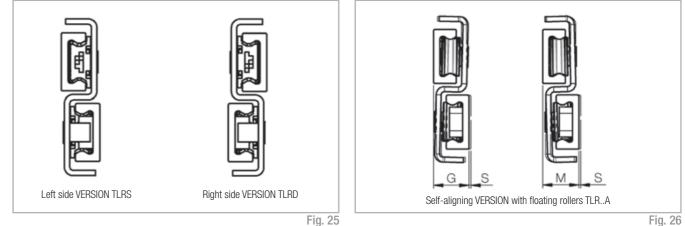
Fig. 19

TQAX40 Load capacity p. TLR-61


Fig. 20

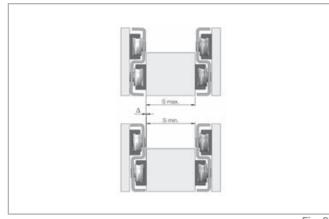
TQAX26 Load capacity p. TLR-61


TLAX40


TLN-TQN series

Dimensions and load capacity

Roller telescopic slides TLR series


Code	A (mm)	B (mm)	D (mm)	E (mm)	F (mm)	G (mm)	M (mm)	S (mm)
TLR18	52	15,2	18	25	Ø 4,5 for screw M4 DIN7991	14,7	15,7	1
TLR28	80	18,6	28	35	Ø 5,5 for screw M5 DIN7991	17,2	19	1,8
TLR43	116	28,4	43	52	Ø 8,5 for screw M8 DIN7991	26,8	30	3,2
								Tab. 1

 \mathbf{V}

Self-aligning capability

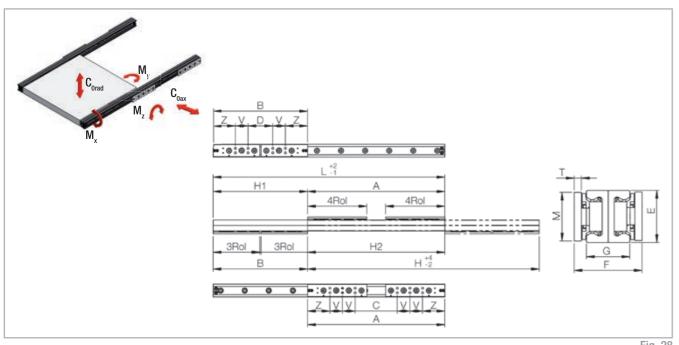
precise structures, common for ball-cage slides and can be eliminated/ heavy binding will consequently much reduce load capacity and expected life-time. The self-aligning capacity is obtained by having a combination of stability. floating and guiding rollers in the TLR..A. i.e. allowing for a minor rotation

When TLR slides are used in pairs, they offer the possibility to absorb minor of the rails whilst maintaining the preload in both upper and lower rails. structural errors or non-precise installation, which otherwise would much The suffix A in TLR..A, indicates "Aligning". To be noted that the rotation increase the required force for moving the mobile part, in both extending ex. of the TLR28A slide hereby changes the nominal value of 18,6mm to and closing direction. Such "binding-problems" for installation on non 17,2mmm (S min) – 19,0mm (S max) while compensating dimensional errors on mobile structures or distance errors between the two lateral sides much reduced with a pair of self-aligning TLR..A slides. A problem of of fixed structures, for which the upper rails are fixed to. The TLR..A is in general always used as a pair with a standard TLR, to assure good lateral

	-		-	
-	=	_		0
⊢	ı	n		~
		ч	=	_

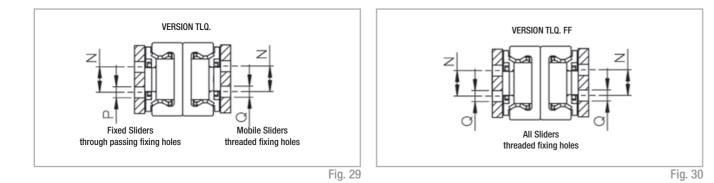
Order code	Version	Characteristics
TLRD43-1010	BASIC	Cold drawn steel rails with patented "ROLLON-NOX"; high depth nitride hardening and black oxidation treatment. The rails are cut to size after treatment, so the rail ends are protected by protective spray. The rollers are core hardened steel, while the intermediate steel S-element is protected with black epoxy electro coating - "ROLLON e-coating".
TLRD43-1010-Q	Q	As a basic TLR product but with additional black "ROLLON e-coating" on the rails, for high corrosion resistance (min 700 hours resistance in salt fog). The rail has no ROLLON e-coating on the raceway contact area with the rollers, as masked before the treatment. The raceways are anyhow with standard oxidation while the wipers with incorporated pre-oiled felt assure lubrication and corrosion protection of raceways.
TLRD43-1010-K	К	As the version Q but with the rollers made in stainless steel AISI440C
		Tab. 2

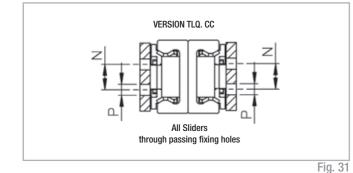
Code	Length L (mm)	Stroke H (mm)	Dynamic coefficient C (N)	Load capacity for a pair of rails Co rad (N)	Weight (kg)
TLR.18290	290	290	731	710	0,9
TLR.18370	370	370	969	940	1,2
TLR.18450	450	450	1.115	1082	1,4
TLR.18530	530	530	1.214	1178	1,6
TLR.18610	610	610	1.286	1246	1,9
TLR.18690	690	690	1.324	1284	2,1
TLR.18770	770	770	1.344	1304	2,3


Code	Length L (mm)	Stroke H (mm)
TLR.43530	530	540
TLR.43610	610	620
TLR.43690	690	700
TLR.43770	770	780
TLR.43850	850	860
TLR.43930	930	940
TLR.431010	1010	1020
TLR.431090	1090	1100
TLR.431170	1170	1180
TLR.431250	1250	1260
TLR.431330	1330	1340
TLR.431410	1410	1420
TLR.431490	1490	1500
TLR.431570	1570	1580
TLR.431650	1650	1660
TLR.431730	1730	1740
TLR.431810	1810	1820
TLR.431890	1890	1900
TLR.431970	1970	1980

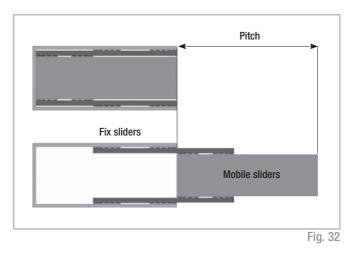
Dynamic coefficient C (N)	Load capacity for a pair of rails Co rad (N)	Weight (kg)
1.578	1.596	2,1
1.860	1.882	2,5
2.045	2.068	2,9
2.711	2.744	3,3
2.933	2.968	3,7
3.084	3.120	4,1
3.180	3.218	4,5
3.259	3.264	4,9
3.325	3.038	5,3
3.381	2.842	5,7
3.428	2.670	6,1
3.469	2.516	6,5
3.505	2.380	6,9
3.537	2.258	7,3
3.565	2.148	7,7
		Tab 4

Tab. 4


Dynamic coefficient C (N)	Load capacity for a pair of rails Co rad (N)	Weight (kg)
4.075	4.156	6,4
4.241	4.326	7,3
6.155	6.278	8,2
6.554	6.686	9,1
6.870	7.008	10
7.127	7.270	10,9
7.341	7.488	11,8
7.520	7.672	12,7
7.674	7.568	13,6
7.807	7.148	14,5
7.922	6.772	15,4
8.024	6.434	16,3
8.115	6.130	17,2
8.195	5.850	18,1
8.268	5.596	19
8.333	5.364	19,9
8.393	5.150	20,8
8.447	4.952	21,7
8.497	4.768	22,6
		Tab. 5


Roller telescopic slides TLQ series

Tab. 6



	E	F	G	М	т	N	р	Q	Sli	ders	7	v	Weight	Weight
Code	(mm)	r (mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(Type ^L	Length L (mm)	(mm)	(mm)	(kg/m)	4 sliders (Kg)
TLQ18FF	18	29,4	19	15	3	8	-	M4	3Rol	87	48	21	1,4	0,4
TLQ28	28	36,6	23,9	25	4	10	Ø5,5 for screw M5 DIN912	M5	3Rol 4Rol	111,5 140,5	58	29	2,5	1,5
TLQ43	43	56,4	36	40	6	15	Ø6,5 for screw M6 DIN912	M6	3Rol 4Rol	155 197	74	42	6	2,4

Customized stroke

TLQ slides offer the unique possibility to easily customize the actual stroke H to individual needs. This is obtained by repositioning the slider distance "A" for "Fixed sliders" and distance "B" for "Mobile sliders", with different distances than indicated on this page. Just keep in mind that distance A is always bigger than B, to maximize the load capacity. By reducing distances between A and B the total stroke increases but the Load capacity decreases, conversely increasing the distance between A and B the total stroke is reduced, while the load capacity increases. Contact ROLLON's Technical department for load capacities according to customized stroke.

Order co	ode	Version	Characteristics
TLQ43-1	1010	BASIC	Cold drawn steel rails with pater treatment. The rails are cut to siz rollers are core hardened steel.
TLQ43-1	1010-Q	Q	As a basic TLQ product but with additi hours resistance in salt fog). The rail h before the treatment. The raceways a assure lubrication and corrosion prote

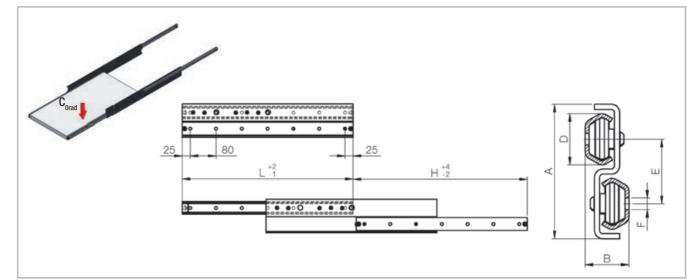
			Fix	sliders (r	nm)	Mobil	e sliders	(mm)	Load capa	acity and	moment	ts for a p	air of rail	S
Code	L (mm)	H (mm)	A (mm)	C (mm)	H1 (mm)	B (mm)	D (mm)	H2 (mm)	Dynamic coefficient C (N)	Co _{rad} (N)	Co _{ax} (N)	M _x * (Nm)	M _y (Nm)	M _z (Nm)
TLQ18FF-370	370	370	185	47	185	185	47	185	725	702	350	6	218	94
TLQ18FF-450	450	450	270	132	180	180	42	270	1159	946	426	6	202	86
TLQ18FF-530	530	530	318	180	212	212	74	318	1.267	828	374	6	268	120
TLQ18FF-610	610	610	366	228	244	244	106	366	1.343	738	332	6	268	120
TLQ18FF-690	690	690	414	276	276	276	138	414	1.400	664	300	6	268	120
TLQ18FF-770	770	770	462	324	308	308	170	462	1.445	604	272	6	268	120
	S	lider type	All slider	s type 3Ro	I	All sliders	s type 3Ro	I						Tab. 8

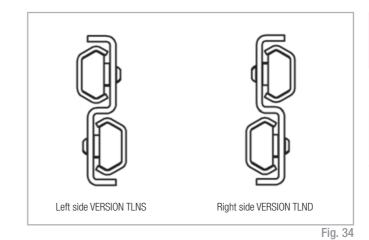
* The value Mx refers to a single rail

Installation notes for radial loads

ented "ROLLON-NOX"; high depth nitride hardening and black oxidation ize after treatment, so the rail ends are protected by protective spray. The

itional black "ROLLON e-coating" on the rails, for high corrosion resistance (min 700 I has no ROLLON e-coating on the raceway contact area with the rollers, as masked are anyhow with standard oxidation while the wipers with incorporated pre-oiled felt tection of raceways.


		н	Fix	sliders (n	nm)	Mobi	le sliders	(mm)	Load capacity	and m	oments	s for a p	pair of i	rails
Code	(mm)	п (mm)	A (mm)	C (mm)	H1 (mm)	B (mm)	D (mm)	H2 (mm)	Dynamic coefficient C (N)	Co _{rad} (N)	Co _{ax} (N)	M * (Nm)	M _y (Nm)	M _z (Nm)
TLQ28450	450	450	227	53	223	223	49	227	602	928	464	18	192	256
TLQ28530	530	530	307	133	223	223	49	307	1138	1754	876	18	192	256
TLQ28610	610	610	360	128	250	250	76	360	1335	2058	808	18	256	342
TLQ28690	690	690	408	176	282	282	108	408	1458	1916	732	18	316	444
TLQ28770	770	770	456	224	314	314	140	456	1552	1754	670	18	316	546
TLQ28850	850	850	504	272	346	346	172	504	1626	1616	618	18	316	576
TLQ28930	930	930	552	320	378	378	204	552	1687	1500	572	18	316	576
TLQ281010	1010	1010	600	368	410	410	236	600	1737	1398	534	18	316	576
TLQ281090	1090	1090	648	416	442	442	268	648	1779	1310	500	18	316	576
TLQ281170	1170	1170	696	464	474	474	300	696	1814	1232	470	18	316	576
TLQ281250	1250	1250	744	512	506	506	332	744	1845	1162	444	18	316	576
TLQ281330	1330	1330	792	560	538	538	364	792	1872	1100	420	18	316	576
TLQ281410	1410	1410	840	608	570	570	396	840	1896	1044	400	18	316	576
TLQ281490	1490	1490	888	656	602	602	428	888	1917	994	380	18	316	576
	Sli	ider type		e 530 type 3 1 610 type 4F		All sliders	type 3Rol							Tab. 9


* The value Mx refers to a single rail

			Fix	sliders (n	ım)	Mobi	le sliders	(mm)	Load capacity	and m	oments	for a p	pair of r	ails
Code	L (mm)	H (mm)	A (mm)	C (mm)	H1 (mm)	B (mm)	D (mm)	H2 (mm)	Dynamic coefficient C (N)	Co _{rad} (N)	Co _{ax} (N)	M _x * (Nm)	M _y (Nm)	M _z (Nm)
TLQ43610	610	600	310	78	300	310	78	300	1529	2228	1114	64	648	864
TLQ43690	690	690	374	142	316	316	84	374	2326	3390	1694	64	680	906
TLQ43770	770	770	456	140	314	314	82	456	3052	4448	2068	64	668	892
TLQ43850	850	850	504	188	346	346	114	504	3305	4816	1916	64	842	1122
TLQ43930	930	930	552	236	378	378	146	552	3509	4978	1784	64	1014	1352
TLQ431010	1010	1010	600	284	410	410	178	600	3676	4656	1668	64	1036	1584
TLQ431090	1090	1090	648	332	442	442	210	648	3816	4374	1568	64	1036	1814
TLQ431170	1170	1170	696	380	474	474	242	696	3935	4126	1478	64	1036	2044
TLQ431250	1250	1250	744	428	506	506	274	744	4037	3902	1398	64	1036	2274
TLQ431330	1330	1330	792	476	538	538	306	792	4126	3702	1326	64	1036	2504
TLQ431410	1410	1410	840	524	570	570	338	840	4204	3522	1262	64	1036	2736
TLQ431490	1490	1490	888	572	602	602	370	888	4272	3358	1204	64	1036	2892
TLQ431570	1570	1570	936	620	634	634	402	936	4334	3210	1150	64	1036	2892
TLQ431650	1650	1650	984	668	666	666	434	984	4389	3072	1102	64	1036	2892
TLQ431730	1730	1730	1032	716	698	698	466	1032	4438	2948	1056	64	1036	2892
TLQ431810	1810	1810	1080	764	730	730	498	1080	4483	2832	1014	64	1036	2892
TLQ431890	1890	1890	1128	812	762	762	530	1128	4524	2726	976	64	1036	2892
TLQ431970	1970	1970	1176	860	794	794	562	1176	4561	2626	940	64	1036	2892
	Sli	der type		e 690 type 3 1 770 type 41		All sliders	type 3Rol							Tab.10

* The value Mx refers to a single rail TLR-12

Roller telescopic slides TLN series

Order code	Version	Characteristics
TLND40-1010	BASIC	Roll formed steel rails with patented The rails are cut to size after treatme core hardened steel, while the interm "ROLLON e-coating".
TLND40-1010-Q	Q	As a basic TLN product but with additiona hours resistance in salt fog) . The rail has before the treatment. The raceways are a assure lubrication and corrosion protectio
TLND40-1010-CW	CW o CR	As basic version with colored aesthet offer also a high resistance to corros to except for the raceways that are sti

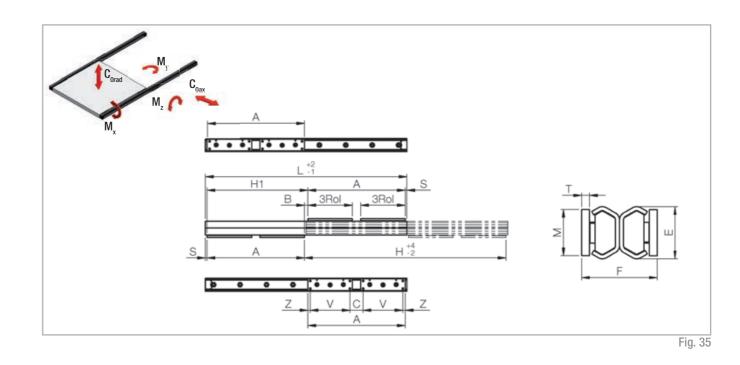
CW o CR on the intermediate except.

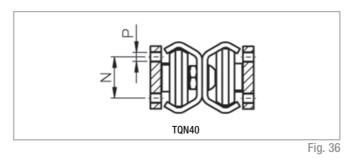
Fig. 33

Code	A (mm)	B (mm)	D (mm)	E (mm)	F (mm)	Fixing screw
TLN.30	76	23,9	29.5	37	Ø 6 5	KIT-40.VC-SP01.0510.ZB
TEN.00	10	20,0	20,0	01	00,0	M5 IS07380
TLN.40	104	33,8	39,5	50	Ø9	KIT-40.VC-SP01.0816.ZB
TLN.40	104	33,0	39,0	50	Ø9	M8 IS07380

The fixing holes on TLN are through passing holes for standard Button-head screws Tab. 11 ISO 7380 or alternatively very Flat-head ROLLON TORX screws 40.VC-SP01

ed "ROLLON-NOX"; nitride hardening and black oxidation treatment. nent, so the rail ends are protected by protective spray. The rollers are mediate steel S-element is protected with black epoxi electro coating -


al black "ROLLON e-coating" on the rails, for high corrosion resistance (min 700 s no ROLLON e-coating on the raceway contact area with the rollers, as masked anyhow with standard oxidation while the wipers with incorporated pre-oiled felt on of raceways.


etic finish ROLLON p-colored CW version (white color) and CR (red color) sion. The treatment is deposited over the entire surface of the guides, toexcept for the raceways that are still protected from oxidation by basic black and the lubricating film, and

Code	Length L (mm)	Stroke H (mm)	Dynamic coefficient C (N)	Load capacity for a pair of rails Co rad (N)	Weight (kg)	Code	Length L (mm)	Stroke H (mm)	Dynamic coefficient C (N)	Load capacity for a pair of rails Co rad (N)	Weight (kg)
TLN.30-290	290	300	369	1086	1,2						
TLN.30-370	370	380	431	1266	1,5						
TLN.30-450	450	460	480	1412	1,8	TLN.30HP-450	450	460	720	2.118	1,9
TLN.30-530	530	540	516	1516	2,2	TLN.30HP-530	530	540	773	2.274	2,2
TLN.30-610	610	620	540	1588	2,5	TLN.30HP-610	610	620	810	2.382	2,5
TLN.30-690	690	700	560	1646	2,8	TLN.30HP-690	690	700	840	2.470	2,8
TLN.30-770	770	780	570	1676	3,1	TLN.30HP-770	770	780	861	2.534	3,1
TLN.30-850	850	860	578	1700	3,4	TLN.30HP-850	850	860	879	2.586	3,4
TLN.30-930	930	940	583	1714	3,7	TLN.30HP-930	930	940	895	2.624	3,7
TLN.30-1010	1010	1020	589	1732	4,0	TLN.30HP-1010	1010	1020	907	2.440	4,0
TLN.30-1090	1090	1100	592	1740	4,3	TLN.30HP-1090	1090	1100	918	2.278	4,3
TLN.30-1170	1170	1180	596	1752	4,6	TLN.30HP-1170	1170	1180	927	2.138	4,6
TLN.30-1250	1250	1260	599	1764	4,9	TLN.30HP-1250	1250	1260	935	2.012	4,9
TLN.30-1330	1330	1340	601	1768	5,2	TLN.30HP-1330	1330	1340	942	1.902	5,2
TLN.30-1410	1410	1420	604	1776	5,5	TLN.30HP-1410	1410	1420	948	1.802	5,6
TLN.30-1490	1490	1500	606	1712	5,8	TLN.30HP-1490	1490	1500	954	1.712	5,9
											Tab. 13

TLN.40-690 690 700 1.011 2.974 5,5 TLN.40HP-690 690 700 1.517 4.462 4.634 TLN.40-770 770 780 1.051 3.090 6,1 TLN.40HP-770 770 780 1.576 4.634 4.642 4.634 4.642 4.642 4.642 4.642 4.644 4.644 4.644 4.644 4.644 <td< th=""><th>Code</th><th>Length L (mm)</th><th>Stroke H (mm)</th><th>Dynamic coefficient C (N)</th><th>Load capacity for a pair of rails Co rad (N)</th><th>Weight (kg)</th><th>Code</th><th>Length L (mm)</th><th>Stroke H (mm)</th><th>Dynamic coefficient C (N)</th><th>Load capacity for a pair of rails Co rad (N)</th><th>Weight (kg)</th></td<>	Code	Length L (mm)	Stroke H (mm)	Dynamic coefficient C (N)	Load capacity for a pair of rails Co rad (N)	Weight (kg)	Code	Length L (mm)	Stroke H (mm)	Dynamic coefficient C (N)	Load capacity for a pair of rails Co rad (N)	Weight (kg)
TLN.40-610 610 620 959 2.820 4,9 TLN.40HP-610 610 620 1.438 4.230 4.230 TLN.40-690 690 700 1.011 2.974 5,5 TLN.40HP-690 690 700 1.517 4.462 4.230 TLN.40-770 770 780 1.051 3.090 6,1 TLN.40HP-770 770 780 1.576 4.634 TLN.40-850 850 860 1.084 3.188 6,7 TLN.40HP-770 770 780 1.655 4.634 TLN.40-330 930 940 1.110 3.264 7,3 TLN.40HP-330 930 940 1.665 4.896 TLN.40-1010 1010 1020 1.133 3.332 7,9 TLN.40HP-1010 1010 1.729 5.086 TLN.40-1030 1090 1100 1.153 3.390 8,5 TLN.40HP-1010 1010 1.725 5.220 4 TLN.40-1170 1170 1180 1	TLN.40-450	450	460	797	2.344	3,7						
TLN.40-690 690 700 1.011 2.974 5,5 TLN.40HP-690 690 700 1.517 4.462 7 TLN.40-770 770 780 1.051 3.090 6,1 TLN.40HP-770 770 780 1.576 4.634 7 TLN.40-850 850 860 1.084 3.188 6,7 TLN.40HP-850 850 860 1.626 4.782 7 TLN.40-930 930 940 1.110 3.264 7,3 TLN.40HP-930 930 940 1.665 4.896 7 TLN.40-1010 1010 1020 1.133 3.332 7,9 TLN.40HP-1010 1010 1.700 5.000 7 TLN.40-1090 1090 1100 1.153 3.390 8,5 TLN.40HP-1090 1090 1100 1.729 5.086 7 TLN.40-1170 1170 1180 1.168 3.436 9,1 TLN.40HP-1170 1170 1180 1.753 5.154 7 <td>TLN.40-530</td> <td>530</td> <td>540</td> <td>889</td> <td>2.614</td> <td>4,3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	TLN.40-530	530	540	889	2.614	4,3						
TLN.40-770 770 780 1.051 3.090 6,1 TLN.40HP-770 770 780 1.576 4.634 4.634 TLN.40-850 850 860 1.084 3.188 6,7 TLN.40HP-850 850 860 1.626 4.782 4.634 4.782 4.733 TLN.40-930 930 940 1.110 3.264 7,3 TLN.40HP-930 930 940 1.665 4.896 4.797 TLN.40-1010 1010 1020 1.133 3.332 7,9 TLN.40HP-1010 1010 1020 1.700 5.000 4.797 TLN.40-1090 1090 1100 1.153 3.390 8,5 TLN.40HP-1090 1090 1100 1.729 5.086 4.797 7.10 1180 1.753 5.154 4.797 TLN.40-1250 1250 1260 1.183 3.480 9,7 TLN.40HP-1330 1330 1340 1.792 5.200 1 TLN.40-1330 1330 1340	TLN.40-610	610	620	959	2.820	4,9	TLN.40HP-610	610	620	1.438	4.230	5,1
TLN.40-850 850 860 1.084 3.188 6,7 TLN.40HP-850 850 860 1.626 4.782 4.782 TLN.40-930 930 940 1.110 3.264 7,3 TLN.40HP-930 930 940 1.665 4.896 7.3 TLN.40-1010 1010 1020 1.133 3.332 7,9 TLN.40HP-1010 1010 1020 1.700 5.000 7.3 TLN.40-1090 1090 1100 1.153 3.390 8,5 TLN.40HP-1090 1090 1100 1.729 5.086 7.3 TLN.40-1170 1170 1180 1.168 3.436 9,1 TLN.40HP-1170 1170 1180 1.753 5.154 7.3 TLN.40-1250 1250 1260 1.183 3.480 9,7 TLN.40HP-1330 1330 1340 1.792 5.200 1 TLN.40-1330 1330 1340 1.195 3.514 10,2 TLN.40HP-1330 1330 1340 1.792	TLN.40-690	690	700	1.011	2.974	5,5	TLN.40HP-690	690	700	1.517	4.462	5,7
TLN.40-9309309401.1103.2647,3TLN.40HP-9309309401.6654.8967TLN.40-1010101010201.1333.3327,9TLN.40HP-1010101010201.7005.0007TLN.40-1090109011001.1533.3908,5TLN.40HP-1090109011001.7295.0867TLN.40-1170117011801.1683.4369,1TLN.40HP-1170117011801.7535.1547TLN.40-1250125012601.1833.4809,7TLN.40HP-1250125012601.7755.2207TLN.40-1330133013401.1953.51410,2TLN.40HP-1330133013401.7925.2001TLN.40-1410141014201.2073.54810,8TLN.40HP-1410141014201.8104.9361TLN.40-1470149015001.2173.57811,4TLN.40HP-1490149015001.8254.6961TLN.40-15701570157015801.8384.4781TLN.40-165016601.2303.62012,6TLN.40HP-1570157015801.8364.2801TLN.40-1730173017401.2353.63413,2TLN.40HP-1730173017401.8604.0981TLN.40-18101810181018201.2383.64213,8TLN.40HP-18101810 </td <td>TLN.40-770</td> <td>770</td> <td>780</td> <td>1.051</td> <td>3.090</td> <td>6,1</td> <td>TLN.40HP-770</td> <td>770</td> <td>780</td> <td>1.576</td> <td>4.634</td> <td>6,3</td>	TLN.40-770	770	780	1.051	3.090	6,1	TLN.40HP-770	770	780	1.576	4.634	6,3
TLN.40-1010101010201.1333.3327,9TLN.40HP-1010101010201.7005.0007.00TLN.40-1090109011001.1533.3908,5TLN.40HP-1090109011001.7295.0867.00TLN.40-1170117011801.1683.4369,1TLN.40HP-1170117011801.7535.1547.00TLN.40-1250125012601.601.1833.4809,7TLN.40HP-1250125012601.7755.2207.00TLN.40-1330133013401.1953.51410,2TLN.40HP-1330133013401.7925.2001.1TLN.40-1410141014201.2073.54810,8TLN.40HP-1410141014201.8104.9361.1TLN.40-1490149015001.2173.57811,4TLN.40HP-1490149015001.8254.6961.1TLN.40-1570157015801.2253.60412,0TLN.40HP-1490149015801.8384.4781.1TLN.40-1650165016601.2303.62012,6TLN.40HP-1570157015801.8364.0981.1TLN.40-1730173017401.2353.63413,2TLN.40HP-1730173017401.8604.0981.1TLN.40-1810181018201.2383.64213,8TLN.40HP-1810181018201.8703.9321.1<	TLN.40-850	850	860	1.084	3.188	6,7	TLN.40HP-850	850	860	1.626	4.782	6,9
TLN.40-1090109011001.1533.3908,5TLN.40HP-1090109011001.7295.0864.9TLN.40-1170117011801.1683.4369,1TLN.40HP-1170117011801.7535.1549.1TLN.40-1250125012601.1833.4809,7TLN.40HP-1250125012601.7755.2209.1TLN.40-1330133013401.1953.51410,2TLN.40HP-1330133013401.7925.2001TLN.40-1410141014201.2073.54810,8TLN.40HP-1410141014201.8104.9361TLN.40-1490149015001.2173.57811,4TLN.40HP-1490149015001.8254.6961TLN.40-1570157015801.2253.60412,0TLN.40HP-1570157015801.8384.4781TLN.40-1650165016601.2303.62012,6TLN.40HP-165016601.8504.2801TLN.40-1730173017401.2353.63413,2TLN.40HP-1730173017401.8604.0981TLN.40-1810181018201.2383.64213,8TLN.40HP-1890189019001.8803.7781	TLN.40-930	930	940	1.110	3.264	7,3	TLN.40HP-930	930	940	1.665	4.896	7,5
TLN.40-1170 1170 1180 1.168 3.436 9,1 TLN.40HP-1170 1170 1180 1.753 5.154 5.154 TLN.40-1250 1250 1260 1.183 3.480 9,7 TLN.40HP-1250 1250 1260 1.775 5.220 1 TLN.40-1330 1330 1340 1.195 3.514 10,2 TLN.40HP-1330 1330 1340 1.792 5.200 1 TLN.40-1410 1410 1420 1.207 3.548 10,8 TLN.40HP-1410 1410 1420 1.810 4.936 1 TLN.40-1490 1490 1500 1.217 3.578 11,4 TLN.40HP-1490 1490 1500 1.825 4.696 1 TLN.40-1570 1570 1580 1.225 3.604 12,0 TLN.40HP-1570 1580 1.838 4.478 1 TLN.40-1650 1650 1660 1.235 3.634 13,2 TLN.40HP-1650 1660 1.850 4.280 1 TLN.40-1730 1730 1740 1.235 3.634 13,2	TLN.40-1010	1010	1020	1.133	3.332	7,9	TLN.40HP-1010	1010	1020	1.700	5.000	8,1
TLN.40-1250 1250 1260 1.183 3.480 9,7 TLN.40HP-1250 1250 1260 1.775 5.200 1 TLN.40-1330 1330 1340 1.195 3.514 10,2 TLN.40HP-1330 1330 1340 1.792 5.200 1 TLN.40-1330 1410 1420 1.207 3.514 10,2 TLN.40HP-1330 1330 1340 1.792 5.200 1 TLN.40-1410 1410 1420 1.207 3.548 10,8 TLN.40HP-1410 1410 1420 1.810 4.936 1 TLN.40-1490 1490 1500 1.217 3.578 11,4 TLN.40HP-1490 1490 1500 1.825 4.696 1 TLN.40-1570 1570 1580 1.225 3.604 12,0 TLN.40HP-1570 1570 1580 1.838 4.478 1 TLN.40-1650 1650 1660 1.230 3.620 12,6 TLN.40HP-1650 1660 1.850 4.098 1 TLN.40-1730 1730 1740 1.235 3.634	TLN.40-1090	1090	1100	1.153	3.390	8,5	TLN.40HP-1090	1090	1100	1.729	5.086	8,7
TLN.40-1330 1330 1340 1.195 3.514 10,2 TLN.40HP-1330 1330 1340 1.792 5.200 1 TLN.40-1410 1410 1420 1.207 3.548 10,8 TLN.40HP-1410 1410 1420 1.810 4.936 1 TLN.40-1490 1490 1500 1.217 3.578 11,4 TLN.40HP-1490 1490 1500 1.825 4.696 1 TLN.40-1490 1490 1500 1.217 3.578 11,4 TLN.40HP-1490 1490 1500 1.825 4.696 1 TLN.40-1570 1570 1580 1.225 3.604 12,0 TLN.40HP-1570 1570 1580 1.838 4.478 1 TLN.40-1650 1650 1660 1.230 3.620 12,6 TLN.40HP-1650 1660 1.850 4.280 1 TLN.40-1730 1730 1740 1.235 3.634 13,2 TLN.40HP-1730 1740 1.860 4.098 1 TLN.40-1810 1810 1820 1.238 3.642 13,8	TLN.40-1170	1170	1180	1.168	3.436	9,1	TLN.40HP-1170	1170	1180	1.753	5.154	9,2
TLN.40-1410141014201.2073.54810,8TLN.40HP-1410141014201.8104.9361TLN.40-1490149015001.2173.57811,4TLN.40HP-1490149015001.8254.6961TLN.40-1570157015801.2253.60412,0TLN.40HP-1570157015801.8384.4781TLN.40-1650165016601.2303.62012,6TLN.40HP-1650165016601.8504.2801TLN.40-1730173017401.2353.63413,2TLN.40HP-1730173017401.8604.0981TLN.40-1810181018201.2383.64213,8TLN.40HP-1810181018201.8703.9321TLN.40-1890189019001.2403.64814,4TLN.40HP-1890189019001.8803.7781	TLN.40-1250	1250	1260	1.183	3.480	9,7	TLN.40HP-1250	1250	1260	1.775	5.220	9,8
TLN.40-1490 1490 1500 1.217 3.578 11,4 TLN.40HP-1490 1490 1500 1.825 4.696 1 TLN.40-1570 1570 1580 1.225 3.604 12,0 TLN.40HP-1570 1570 1580 1.838 4.478 1 TLN.40-1650 1650 1660 1.230 3.620 12,6 TLN.40HP-1650 1660 1.850 4.280 1 TLN.40-1730 1730 1740 1.235 3.634 13,2 TLN.40HP-1730 1730 1740 1.860 4.098 1 TLN.40-1810 1810 1820 1.238 3.642 13,8 TLN.40HP-1810 1810 1820 1.870 3.932 1 TLN.40-1810 1810 1820 1.238 3.642 13,8 TLN.40HP-1810 1810 1820 1.870 3.932 1 TLN.40-1890 1890 1900 1.240 3.648 14,4 TLN.40HP-1890 1890 1900 1.880 3.778 1	TLN.40-1330	1330	1340	1.195	3.514	10,2	TLN.40HP-1330	1330	1340	1.792	5.200	10,4
TLN.40-1570 1570 1580 1.225 3.604 12,0 TLN.40HP-1570 1570 1580 1.838 4.478 1 TLN.40-1650 1650 1660 1.230 3.620 12,6 TLN.40HP-1650 1650 1660 1.850 4.280 1 TLN.40-1730 1730 1740 1.235 3.634 13,2 TLN.40HP-1730 1730 1740 1.860 4.098 1 TLN.40-1730 1810 1820 1.238 3.642 13,8 TLN.40HP-1730 1740 1.860 4.098 1 TLN.40-1810 1810 1820 1.238 3.642 13,8 TLN.40HP-1810 1810 1820 1.870 3.932 1 TLN.40-1890 1890 1900 1.240 3.648 14,4 TLN.40HP-1890 1890 1900 1.880 3.778 1	TLN.40-1410	1410	1420	1.207	3.548	10,8	TLN.40HP-1410	1410	1420	1.810	4.936	11,0
TLN.40-1650 1650 1660 1.230 3.620 12,6 TLN.40HP-1650 1660 1.850 4.280 1 TLN.40-1730 1730 1740 1.235 3.634 13,2 TLN.40HP-1730 1730 1740 1.860 4.098 1 TLN.40-1810 1810 1820 1.238 3.642 13,8 TLN.40HP-1810 1810 1820 1.870 3.932 1 TLN.40-1890 1890 1900 1.240 3.648 14,4 TLN.40HP-1890 1890 1900 1.880 3.778 1	TLN.40-1490	1490	1500	1.217	3.578	11,4	TLN.40HP-1490	1490	1500	1.825	4.696	11,6
TLN.40-1730 1730 1740 1.235 3.634 13,2 TLN.40HP-1730 1730 1740 1.860 4.098 1 TLN.40-1810 1810 1820 1.238 3.642 13,8 TLN.40HP-1810 1810 1820 1.870 3.932 1 TLN.40-1890 1890 1900 1.240 3.648 14,4 TLN.40HP-1890 1890 1900 1.880 3.778 1	TLN.40-1570	1570	1580	1.225	3.604	12,0	TLN.40HP-1570	1570	1580	1.838	4.478	12,2
TLN.40-1810 1810 1820 1.238 3.642 13,8 TLN.40HP-1810 1810 1820 1.870 3.932 1 TLN.40-1890 1890 1900 1.240 3.648 14,4 TLN.40HP-1890 1890 1900 1.880 3.778 1	TLN.40-1650	1650	1660	1.230	3.620	12,6	TLN.40HP-1650	1650	1660	1.850	4.280	12,8
TLN.40-1890 1890 1900 1.240 3.648 14,4 TLN.40HP-1890 1890 1900 1.880 3.778 1	TLN.40-1730	1730	1740	1.235	3.634	13,2	TLN.40HP-1730	1730	1740	1.860	4.098	13,4
	TLN.40-1810	1810	1820	1.238	3.642	13,8	TLN.40HP-1810	1810	1820	1.870	3.932	14,0
	TLN.40-1890	1890	1900	1.240	3.648	14,4	TLN.40HP-1890	1890	1900	1.880	3.778	14,6
TLN.40-1970 1970 1980 1.244 3.636 15,0 TLN.40HP-1970 1970 1980 1.888 3.636 1	TLN.40-1970	1970	1980	1.244	3.636	15,0	TLN.40HP-1970	1970	1980	1.888	3.636	15,2

Roller telescopic slides TQN series

	Е	E	М	т	N	р	Slic	lers	7	v	S	N°	В	Rail	Weight
Code	(mm)	' (mm)	(mm)	' (mm)	(mm)	(mm)	Туре	Length L (mm)	(mm)	(mm)	(mm)	fori	(mm)	Weight (Kg/m)	4 sliders (Kg)
TQN30	29,5	40	20	4	-	M5	3RoL	92	31	30	5	2	10	1,9	0,45
TQN40	39,5	57,3	35	6	23	M6	3RoL	135	7,5	120	5	4	10	3,1	1,5
															Tab. 15

Customized stroke

TQN slides offer the unique possibility to easily customize the actual stroke H, to individual needs by the standard products. This obtained simply by repositioning the slider distance "A" for "Fixed sliders" and "Mobile sliders", with different distance than indicated on this page. The concept is that by reducing distances the total stroke increases but the Load capacity decreases, conversely increasing the distances the total stroke is reduced, while the load capacity increases. Contact ROLLON's Technical department for load capacities according to customized stroke. For radial loading the slider must be installed with the mark "Up-side" facing upwards. The sliders fixed to structure are marked "Fix-sliders". When used in pairs, the same slide can be installed left or right, just by rotating

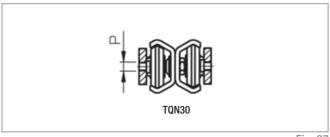
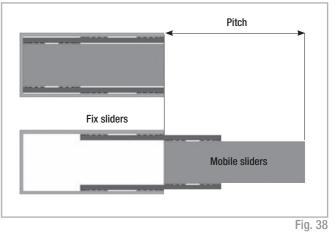
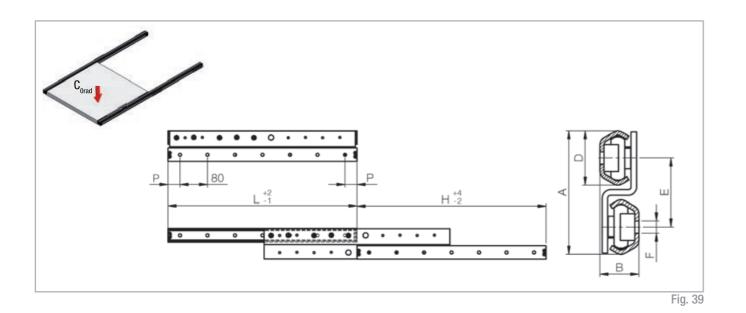



Fig. 37

TLR-15

Order code	Version	Characteristics
TQN40-1010	BASIC	Roll formed steel rails with patented "ROLLON-NOX"; nitride hardening and black oxidation treatment. The rails are cut to size after treatment, so the rail ends are protected by protective spray. The rollers are core hardened steel.
TQN40-1010-Q	Q	As a basic TQN product but with additional black "ROLLON e-coating" on the rails, for high corrosion resistance (min 700 hours resistance in salt fog). The rail has no ROLLON e-coating on the raceway contact area with the rollers, as masked before the treatment. The raceways are anyhow with standard oxidation while the wipers with incorporated pre-oiled felt assure lubrication and corrosion protection of raceways.
TQN40-1010-CW	CW o CR	As a Basic version but with rails and intermediate element with additional colored treatment ROLLON c-color. Upon request available PC-version, where rails and intermediate element, except raceways, are with RED or WHITE powder coating, code PCR and PCW.

Tab. 16


			Fix & N	Aobile slider	s (mm)	Load	capacity a	nd momen	its for a pa	ir of rails	
Code	L (mm)	H (mm)	A (mm)	C (mm)	H1 (mm)	Dynamic coefficient C (N)	Co _{rad} (N)	Co _{ax} (N)	M _x * (Nm)	M _y (Nm)	M _z (Nm)
TQN30-450	450	450	215	93	225	419	1234	432	8	174	246
TQN30-530	530	530	255	133	265	463	1362	476	8	228	326
TQN30-610	610	610	295	173	305	494	1324	508	8	228	406
TQN30-690	690	690	335	213	345	517	1190	532	8	228	472
TQN30-770	770	770	375	253	385	535	1080	520	8	228	472
TQN30-850	850	850	415	293	425	550	990	478	8	228	472
TQN30-930	930	930	455	333	465	562	914	440	8	228	472
TQN30-1010	1010	1010	495	373	505	572	848	408	8	228	472
TQN30-1090	1090	1090	535	413	545	580	790	382	8	228	472
TQN30-1170	1170	1170	575	453	585	587	740	358	8	228	472
TQN30-1250	1250	1250	615	493	625	593	696	336	8	228	472
TQN30-1330	1330	1330	655	533	665	599	658	318	8	228	472
TQN30-1410	1410	1410	695	573	705	603	624	300	8	228	472
TQN30-1490	1490	1490	735	613	745	608	592	286	8	228	472
		Slider type	All sliders typ	e 3Rol							Tab. 17

* The value Mx refers to a single rail

			Fix & I	Nobile slider	s (mm)	Load capacity and moments for a pair of rails						
Code	L (mm)	L H (mm) (mm)	A (mm)	C (mm)	H1 (mm)	Dynamic coefficient C (N)	Co _{rad} (N)	Co _{ax} (N)	M _x * (Nm)	M _y (Nm)	M _z (Nm)	
TQN40-610	610	610	295	40	305	405	2382	834	20	562	640	
TQN40-690	690	690	335	80	345	440	2592	906	20	562	800	
TQN40-770	770	770	375	120	385	468	2516	964	20	562	960	
TQN40-850	850	850	415	160	425	490	2314	1008	20	562	1120	
TQN40-930	930	930	455	200	465	508	2142	1044	20	562	1152	
TQN40-1010	1010	1010	495	240	505	522	1994	972	20	562	1152	
TQN40-1090	1090	1090	535	280	545	535	1864	910	20	562	1152	
TQN40-1170	1170	1170	575	320	585	545	1750	854	20	562	1152	
TQN40-1250	1250	1250	615	360	625	554	1650	806	20	562	1152	
TQN40-1330	1330	1330	655	400	665	562	1562	762	20	562	1152	
TQN40-1410	1410	1410	695	440	705	569	1480	722	20	562	1152	
TQN40-1490	1490	1490	735	480	745	576	1408	686	20	562	1152	
TQN40-1570	1570	1570	775	520	785	581	1342	654	20	562	1152	
TQN40-1650	1650	1650	815	560	825	586	1282	626	20	562	1152	
TQN40-1730	1730	1730	855	600	865	591	1228	600	20	562	1152	
TQN40-1810	1810	1810	895	640	905	595	1178	574	20	562	1152	
TQN40-1890	1890	1890	935	680	945	599	1132	552	20	562	1152	
TQN40-1970	1970	1970	975	720	985	602	1088	532	20	562	1152	
	Slider type All sliders type 3Rol									Tab. 18		

* The value Mx refers to a single rail

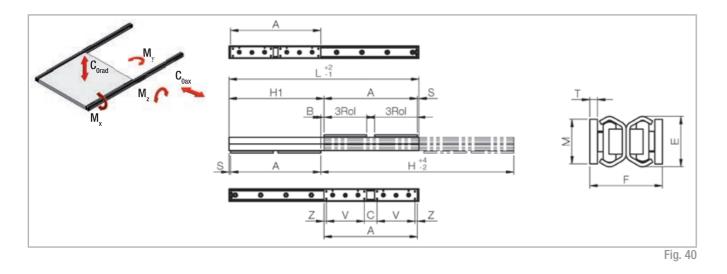
▶ Roller telescopic slides TLAX series "INOX"

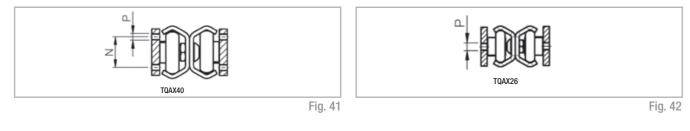
Code	A (mm)	B (mm)	D (mm)	E (mm)	F (mm)	Type of Fixing screws
TLAX26	65	23	26	35	Ø 6,5	KIT-40.VC-SP01.0510.ZB M5 IS07380
TLAVAO	00	00.0	00.5	50	5 0	KIT-40.VC-SP01.0816.ZB
TLAX40	90	28,3	39,5	50	Ø 9	M8 IS07380
						Tab. 19

ad screws ISO 7380 or alternatively very Flat-head ROLLON TORX screws slide can be used both left and right side on mobile part, just by turning 40.VC-SP01 TLAX must be mounted with upper rail fixed to structure and around the slide .

The fixing holes on TLAX are through passing holes for standard Button-he- the movable lower rail fixed to the moving part. When used in pairs the same

Order code	Version	Characteristics
TLAX40-1000	BASIC	Rails and intermediate S-element in AISI304 . Rollers in hardened AISI440C .
TLAX40-1000-X	Х	As Basic version, but rails and intermediate S-element completely Electro-Polished for very high corrosion resistance, 1000hours in salt fog . The Electro Polishing also gives the product a very shiny surface.

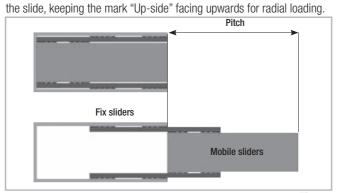

Tab. 20


Code	Length L (mm)	Stroke H (mm)	P (mm)	N° of Y-access holes	Load capacity for a pair of rails Co rad (N)	Weight (kg)
TLAX26-300	300	300	30	4	640	1,2
TLAX26-350	350	350	55	4	800	1,4
TLAX26-400	400	400	40	5	914	1,5
TLAX26-450	450	450	25	6	1.000	1,7
TLAX26-500	500	500	50	6	1.066	1,9
TLAX26-550	550	550	35	7	1.120	2,1
TLAX26-600	600	600	20	8	1.164	2,3
TLAX26-650	650	650	45	8	1.200	2,4
TLAX26-700	700	700	30	9	1.230	2,6
TLAX26-750	750	750	55	9	1.258	2,8
TLAX26-800	800	800	40	10	1.280	3
TLAX26-850	850	850	25	11	1.300	3,2
TLAX26-900	900	900	50	11	1.318	3,3
TLAX26-1000	1000	1000	20	13	1.330	3,7
TLAX26-1100	1100	1100	30	14	1.218	4,1
TLAX26-1200	1200	1200	40	15	1.124	4,4

Code	Length L (mm)	Stroke H (mm)	P (mm)
TLAX40-500	500	500	50
TLAX40-550	550	550	35
TLAX40-600	600	600	20
TLAX40-650	650	650	45
TLAX40-700	700	700	30
TLAX40-750	750	750	55
TLAX40-800	800	800	40
TLAX40-850	850	850	25
TLAX40-900	900	900	50
TLAX40-1000	1000	1000	20
TLAX40-1100	1100	1100	30
TLAX40-1200	1200	1200	40
TLAX40-1300	1300	1300	50
TLAX40-1400	1400	1400	20
TLAX40-1500	1500	1500	30
TLAX40-1600	1600	1600	40

N° of Y-access holes	Load capacity for a pair of rails Co rad (N)	Weight (kg)		
6	1.504	3,4		
7	1.684	3,7		
8	1.828	4,1		
8	1.948	4,4		
9	2.048	4,7		
9	2.134	5		
10	2.206	5,3		
11	2.270	5,7		
11	2.328	6		
13	2.422	6,6		
14	2.316	7,3		
15	2.144	7,9		
16	1.996	8,5		
18	1.868	9,2		
19	1.754	9,8		
20	1.654	10,5		
		Tab. 22		

Roller telescopic slides TQAX series "INOX"



	Е	F	F	М	т	N	Р	Slic	lers	z	v	S	N°	В		Weight 4
Code	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Туре	Length (mm)	(mm)	(mm)	(mm)	holes	(mm)	weight (Kg/m)	sliders (Kg)	
TQAX26	26	44	25	4	-	M5	3Rol	80	25	30	14	2	28	1,6	0,4	
TQAX40	39,5	57,3	35	6	23	M6	3Rol	135	7,5	120	0	4	0	3,1	1,5	
															Tab. 23	

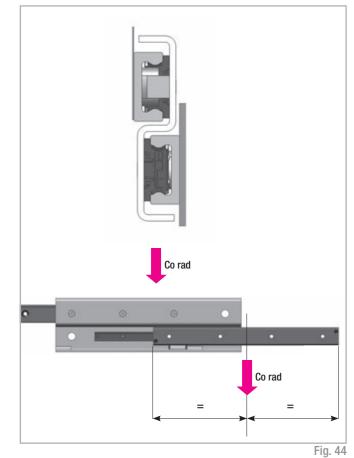
Customized stroke

TQAX slides offer the unique possibility to easily customize the actual stroke H, to individual needs by the standard products. This obtained simply by repositioning the slider distance "A" for "Fixed sliders" and "Mobile sliders", with different distance than indicated on this page. The concept is that by reducing distances the total stroke increases but the Load capacity decreases, conversely increasing the distances the total stroke is reduced, while the load capacity increases. Contact ROLLON's Technical department for load capacities according to customized stroke. For radial loading the slide must be installed with the mark "Up-side" facing upwards. The sliders fixed to structure are marked "Fix-sliders" while the once fixed to mobile part are marked "Mobile sliders". When

used in pairs, the same slide can be installed left or right, just by rotating

Fig. 43

Order code	Version	Characteristics
TQAX40-1000	BASIC	Roll formed inox rails in AISI304 . Rollers in hardened AISI440C .
TQAX40-1000-X	Х	As Basic version, but rails and intermediate S-element completely Electro-Polished for very high corrosion resistance, 1000hours in salt fog. The Electro Polishing also gives the product a very shiny surface.
		Tab 2


Ц Н			Fix &	Mobile sliders	(mm)	Load capacity and moments for a pair of rails					
Code	(mm)	(mm)	A (mm)	C (mm)	H1 (mm)	Co _{rad} (N)	Co _{ax} (N)	M _x * (Nm)	M _y (Nm)	M _z (Nm)	
TQAX26-400	400	400	172	62	200	836	292	6	98	144	
TQAX26-450	450	450	197	87	225	932	326	6	124	184	
TQAX26-500	500	500	222	112	250	1008	352	6	152	224	
TQAX26-550	550	550	247	137	275	956	374	6	170	264	
TQAX26-600	600	600	272	162	300	890	390	6	170	304	
TQAX26-650	650	650	297	187	325	830	406	6	170	316	
TQAX26-700	700	700	322	212	350	780	418	6	170	316	
TQAX26-750	750	750	347	237	375	734	394	6	170	316	
TQAX26-800	800	800	372	262	400	694	372	6	170	316	
TQAX26-850	850	850	397	287	425	658	352	6	170	316	
TQAX26-900	900	900	422	312	450	626	334	6	170	316	
TQAX26-950	950	950	447	337	475	596	318	6	170	316	
TQAX26-1000	1000	1000	472	362	500	568	304	6	170	316	
TQAX26-1100	1100	1100	522	412	550	522	280	6	170	316	
TQAX26-1200	1200	1200	572	462	600	482	258	6	170	316	
	Slider type All sliders type 3Rol									Tab. 2	

* The value Mx refers to a single rail

	Fix & Mobile sliders (mm)					Lo	Load capacity and moments for a pair of rails						
Code	L (mm)	п (mm)	A (mm)	C (mm)	H1 (mm)	Co _{rad} (N)	Co _{ax} (N)	M _x * (Nm)	M _y (Nm)	M _z (Nm)			
TQAX40-600	600	600	300	45	300	1978	692	18	468	526			
TQAX40-650	650	650	325	70	325	2082	728	18	468	606			
TQAX40-700	700	700	350	95	350	2170	760	18	468	686			
TQAX40-750	750	750	375	120	375	2168	786	18	468	766			
TQAX40-800	800	800	400	145	400	2052	808	18	468	846			
TQAX40-850	850	850	425	170	425	1948	828	18	468	926			
TQAX40-900	900	900	450	195	450	1854	846	18	468	960			
TQAX40-950	950	950	475	220	475	1768	860	18	468	960			
TQAX40-1000	1000	1000	500	245	500	1690	824	18	468	960			
TQAX40-1100	1100	1100	550	295	550	1554	758	18	468	960			
TQAX40-1200	1200	1200	600	345	600	1438	702	18	468	960			
TQAX40-1300	1300	1300	650	395	650	1338	652	18	468	960			
TQAX40-1400	1400	1400	700	445	700	1250	610	18	468	960			
TQAX40-1500	1500	1500	750	495	750	1174	572	18	468	960			
TQAX40-1600	1600	1600	800	545	800	1106	540	18	468	960			
	Slider type All sliders type 3Rol									Tab. 2			

* The value Mx refers to a single rail

Sizing of telescopic applications

The main factors for sizing the slides for a telescopic movement:

- The weight/forces of mobile part and their position compared to slides.
- Presence of dynamic forces / eventual abuse
- max. acceptable flexion
- max. acceptable extraction/closing force of mobile part
- Ambients, frequency, speed
- Expected lifetime

All load capacities Co rad, are indicated per pair of slides and with the load perfectly centered. I.e an homogeneous load placed between 2 slides. Hereby the load P is acting as a radial point load, at half the extension and in the middle between the 2 slides. The load capacity for a single is then:

$P = \frac{Co rad}{2}$

When sizing a telescopic application, it must be carefully evaluated if the load is centered. Also it must be considered if any external dynamic forces, or possible abuse could further increase the load forces acting on the slides.

In case the load isn't centered. i.e. load center Pe1 more towards one of the slides, and/or more towards the tip of the load, the center weighted load must be calculated

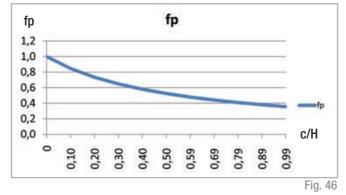
= Pe1 , to be inserted in formula on next page.

$$Pe1 = \frac{(P \cdot a)}{(a + b)} \cdot fp$$

Where :

P = Weight/load of mobile part

Fig. 45


a, b = distances from centered load to left/right slide

fp = load position coefficient, based on relation of "c" distance between actual load P and load Co rad position, compared stroke H.

The coefficient fp is obtained from below diagram. as the ratio between $\ensuremath{\text{``c/H"}}$.

When only 1 slide the formula is $Pe = P \cdot fp Pe = P \cdot fp$

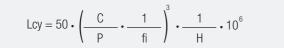
Capaticy load reduction - According to the position of the load p

Verification of load capacity

To assure a correct selection of the slides according to the slide's load capacity, it is assumed the known different forces acting on the slides, which then must be decomposed in : radial, axial or moment forces. Then again compared to load/moment capacities indicated for each single product in previous pages. For the slides with intermediate element TLR, TLN and TLAX the verification is mainly down to comparing the load capacity Co Rad. to Pe including a safety factor Z.

 $Pe \le Co rad \bullet Z$

Where Z is the safety coefficient as per below table

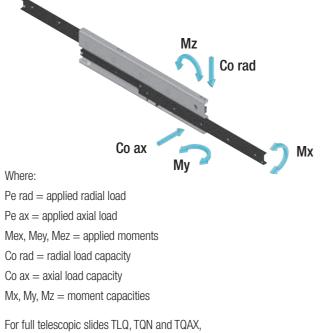

Safety coefficient - Z	Application conditions
1-1,5	Precise calculation of load/forces, precise assembly and rigid structures
1,5-2	Intermediate conditions
2-3,5	Roughly estimation of load/forces, not precise and not rigid structures
	Tab. 27

Lifetime calculation

Theoretical lifetime calculation

The theoretical life of the rollers and raceways of rail should be determined by the conventional formula as indicated below in km of running, however, should keep in mind that the value thus calculated must be taken with caution just for orientation, in fact, the real service life achieved can be very different from that calculated value, because the phenomena of wear and fatigue are caused by factors not easy to predetermine, for example:

- Inaccuracy in the estimation of the real loading condition
- Overloading for inaccuracies in assembling
- Vibration, shock and dynamic pulse stress
- Raceways status of lubrication
- Thermal excursions
- Environmental pollution and dust
- Damage mounting
- Stroke length and frequency of movement



Where:

- Lcy = N° of cycles open/close
- C = Dynamic load coefficient
- P = Weight/load of single rail (N)
- H = Stroke (mm)
- $$\label{eq:ficient} \begin{split} \text{fi} &= \text{Coefficient taking into account operational ambient} \\ & \text{and level of correct lubrication} \end{split}$$

The correction factor fi applied to the theoretical calculation formula have the sole purpose of guiding the designer qualitatively on the influence in the lifetime estimation of the real application conditions without any pretense of precision. For more details please contact Rollon's technical department.

The slides TLAX and TQAX is expected to reach approx. 100.000 cycles, with a load of 70% of max load capacity.

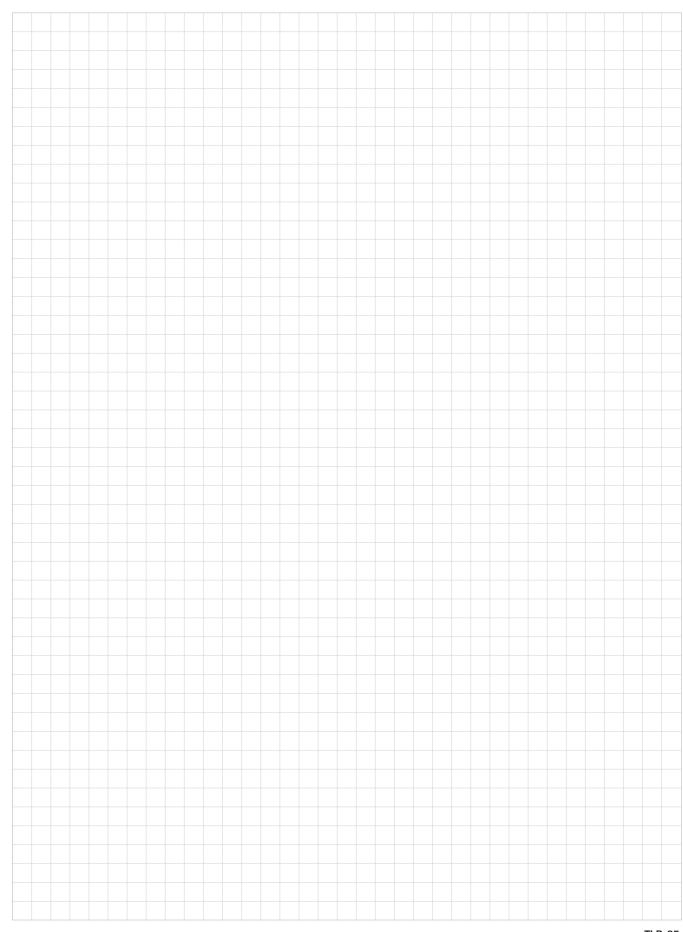
the calculation might also includes moments.

1	Pe ax	Pe rad +	Mex +	Mey +	Mez	1
		Co rad	Mx	My	Mz	Ζ

Coefficient fi	Operating conditions		
1-1.5	Correct load sizing, rigid structures, constantgood lubrication, clean ambient		
1.5-2	Intermediate conditions		
2-3.5	Approximative load sizing, unprecise non rigid structures, dusty not clear ambient.		

Tab. 28

The actual lifetime very much depends on constant good lubrication of the raceways. Without good constant lubrication and/or in very dusty ambients the actual lifetime expectations can be much reduced.


Calculation of load P to be used for lifetime calculation

The load P to be used in below formular is referred to single slide, with load in the centre. If used in pair, load on each single slide must be calculated.

The slides TLQ, TQN might include moments Mex, Mey and Mez, in addition to radial and axial loads. The formula in case of moments is:

	$Pe = Co rad \cdot$	Pe rad	Pe ax	Mex	Mey	Mez	
		Co rad	Co ax	Mx	Му	Mz /	

Notes	7/	\checkmark
-------	----	--------------

Notes / 🗸

EUROPE

ROLLON S.p.A. - ITALY (Headquarters)

Via Trieste 26 I-20871 Vimercate (MB) Phone: (+39) 039 62 59 1 www.rollon.it - infocom@rollon.it

ROLLON B.V. - NETHERLANDS

Ringbaan Zuid 8 6905 DB Zevenaar Phone: (+31) 316 581 999 www.rollon.nl - info@rollon.nl

AMERICA

ROLLON Corporation - USA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492 www.rolloncorp.com - info@rolloncorp.com

ASIA

ROLLON Ltd - CHINA

No. 1155 Pang Jin Road, China, Suzhou, 215200 Phone: +86 0512 6392 1625 www.rollon.cn.com - info@rollon.cn.com

Consult the other ranges of products

V

Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON S.p.A. - RUSSIA (Rep. Office)

117105, Moscow, Varshavskoye shosse 17, building 1 Phone: +7 (495) 508-10-70 www.rollon.ru - info@rollon.ru

ROLLON - SOUTH AMERICA (Rep. Office)

R. Joaquim Floriano, 397, 2o. andar Itaim Bibi - 04534-011, São Paulo, BRASIL Phone: +55 (11) 3198 3645 www.rollonbrasil.com.br - info@rollonbrasil.com

ROLLON India Pvt. Ltd. - INDIA

1st floor, Regus Gem Business Centre, 26/1 Hosur Road, Bommanahalli, Bangalore 560068 Phone: (+91) 80 67027066 www.rollonindia.in - info@rollonindia.in

ROLLON S.A.R.L. - FRANCE

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr

ROLLON Ltd - UK (Rep. Office)

The Works 6 West Street Olney Buckinghamshire, United Kingdom, MK46 5 HR Phone: +44 (0) 1234964024 www.rollon.uk.com - info@rollon.uk.com

3F Shiodome Building, 1-2-20 Kaigan, Minato-ku, Tokyo 105-0022 Japan Phone +81 3 6721 8487 www.rollon.jp - info@rollon.jp

Distributor

v

v

info@bibus.com.tr www.bibus.com.tr

All addresses of our global sales partners can also be found at www.rollon.com

The content of this document and its use are subject to the general terms of sale of ROLLON available on the web site www.rollon.com Changes and errors expected. The text and images may be used only with our permission

v