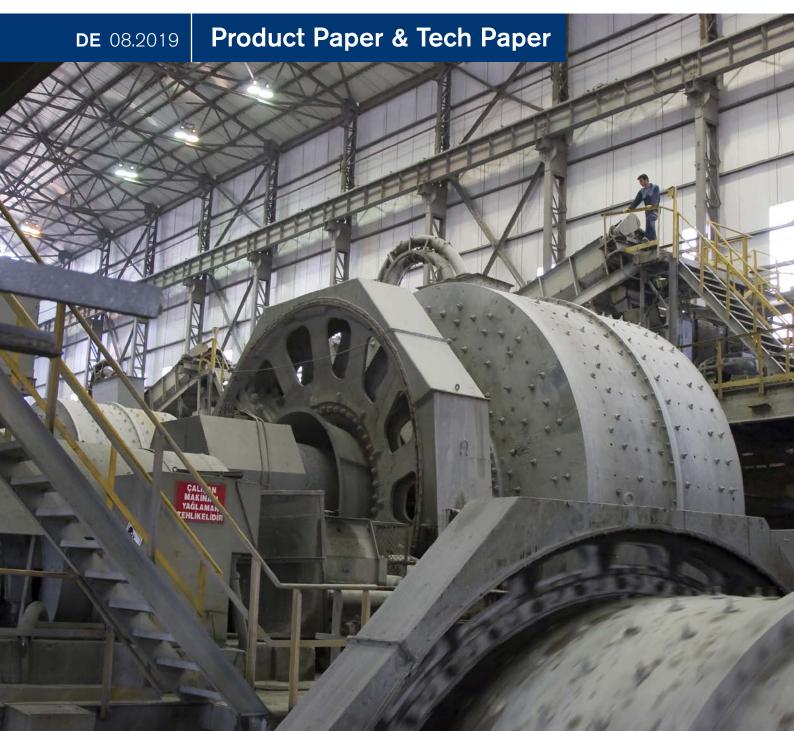


Zahnkupplungen



RINGFEDER® TNZ

Willkommen

Luftfahrt

Verfahrenstechnik

Antriebe

Energie

Rohstoffe

Ihr Systemlieferant rund um den Antriebsstrang

Wir sagen, was wir meinen und wir meinen, was wir sagen.

Wir sehen die Dinge aus der Sicht unserer Kunden.

Wir nehmen Rücksicht auf unsere Mitarbeiter und deren Familien sowie auf unsere Umwelt und Gesellschaft.

RINGFEDER POWER TRANSMISSION ist weltweit Marktführer in Nischenmärkten der Antriebstechnik und aufgrund seiner kundenspezifischen, anwendungsorientierten Lösungen geschätzt, die den Kunden einen herausragenden und störungsfreien Betrieb sichern. Unter unserem starken Markennamen RINGFEDER® bieten wir Spannverbindungen, Dämpfungstechnik und Kupplungen für den Erstausrüster, aber auch den Endkunden an.

Kunden beraten wir nicht nur kompetent mit über 90 Jahren Erfahrung, sondern entwickeln zusammen mit ihnen innovative Ideen. Mit unserem Anspruch als Partner for Performance.


Rund um den Antriebsstrang versprechen wir

- Ausgezeichnetes Know-how für unsere anspruchsvollen Kunden
- Bestes Kosten-Nutzen-Verhältnis
- Kurze Reaktionszeiten und hohe Produktverfügbarkeit

Ihre Projekte sind unser Antrieb

Know-how: Über 90 Jahre Expertise.

Vertrauen Sie auf jahrzehntelange Engineering - Expertise vom Erfinder der Reibungsfeder. Als Experte für Antriebs- und Dämpfungstechnik sind wir überall dort Ihr verlässlicher Partner, wo Kräfte wirken. Sei es das dauerhafte Übertragen von sehr hohen Drehmomenten durch kraft- oder formschlüssige Verbindungen oder das Auf- und Abfangen extremer Energien, um teure Konstruktionen zu schützen.

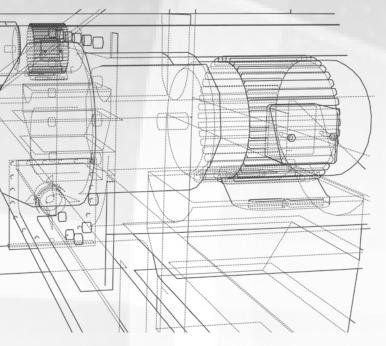
Ihr kompetenter Partner:

Von der Entwicklung bis zum fertigen Produkt.

Wir begleiten Sie bis zum erfolgreichen Abschluss Ihres Vorhabens. Schon in der Entwicklungsphase Ihres Projekts bieten wir unser Know-how und professionelle Lösungen an. Durch die Zusammenarbeit mit Weltmarktführern und als globaler Anbieter herausragender Produkte und Sonderlösungen sind wir für Sie ein verlässlicher Partner.

Online-Berechnungsprogramm:

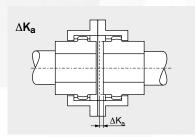
Immer die passende Lösung finden.


Als Antwort auf die komplexen Anforderungen, welche an die richtige Auswahl und Auslegung der benötigten Produkte unter praxisrelevanten Bedingungen gestellt werden, haben wir für Sie unser Online-Berechnungsprogramm entwickelt. Ingenieure und Fachleute können hier, unter Berücksichtigung verschiedener Parameter, übertragbare Drehmomente und weitere wichtige Werte berechnen. Besuchen Sie unsere Webseite www.ringfeder.com!

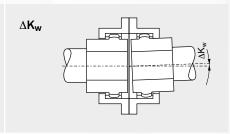
Weltweit vor Ort:

Wir sind für Sie da. Jederzeit und überall.

Mit unseren Standorten in Deutschland, Tschechien, USA, Brasilien, China und Indien sowie einem weltweiten Service- und Partnernetzwerk sind wir rund um die Uhr für Sie da. So ist unsere Unterstützung für einen erfolgreichen Abschluss Ihrer Projekte jederzeit gewährleistet.


RINGFEDER® Zahnkupplungen



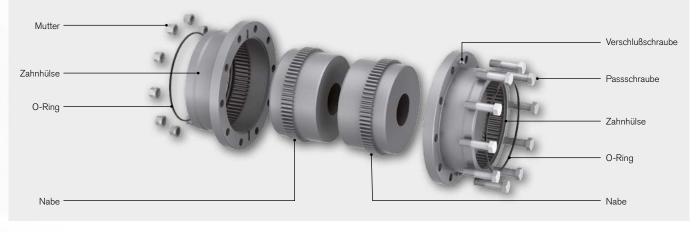

Einleitung

Die torsionssteifen Zahnkupplungen RINGFEDER® TNZ dienen der Verbindung von Maschinenwellen bei hohen Drehmomentanforderungen. Durch eine kompakte Bauweise zeichnen sich diese Kupplungen insbesondere durch ihre hohe Leistungsdichte aus. Die Kupplungsgehäuse haben eine gerade Innenverzahnung, während die Nabenkörper eine mit veränderlichem Radius bombierte Außenverzahnung tragen. Dies ermöglicht die räumliche Bewegung der Nabenkörper in den Zahnhülsen, wodurch axiale, winklige und radiale Verlagerungen der gekuppelten Wellen in festgelegten Grenzen ausgeglichen werden können.

Die serienmäßige Verzahnung lässt einen Winkelversatz von bis zu 0,5° je Verzahnungsebene und mehrere Millimeter Axialbewegung zu. Der maximal mögliche Radialversatz ist abhängig vom Abstand der beiden Verzahnungsebenen. Durch hochwertige Zahnflanken und Schmierfett mit Höchstdruckzusätzen werden niedrige Rückstellkräfte sowie eine lange Lebensdauer der RINGFEDER® TNZ Zahnkupplungen erreicht. Auf Anfrage ist die RINGFEDER® TNZ auch mit Flanschanschlussmaßen gemäß AGMA 9008-B00 erhältlich.

Zahnkupplungen RINGFEDER® TNZ

RINGFEDER®	Übertragbares Nenn-Drehmoment T _{KN} [Nm]	mit integriertem O-Ring	mit separatem O-Ring-Deckel	Min. Bohrungsdurchmesser* d _{1kmin /} d _{2kmin} [mm]	Max. Bohrungsdurchmesser* d _{1kmax} / d _{2kmax} [mm]
TNZ ZCA / TNZ ZCB	1750 – 195000	•	•	12 – 130	50 – 270
TNZ ZCAU / TNZ ZCBU	1750 – 195000	•	•	12 – 130	50 – 270
TNZ ZCAUU / TNZ ZCBUU	1750 – 195000	•	•	12 – 130	50 - 270
TNZ ZCAF / TNZ ZCBF	1750 – 195000	•	•	12 – 130	55 – 330
TNZ ZCAK / TNZ ZCBK	1750 – 195000	•	•	12 – 130	50 - 270
TNZ ZCAV / TNZ ZCBV	1750 – 195000	•	•	12 – 130	50 – 270
TNZ ZCAZ / TNZ ZCBZ	1750 – 195000	•	•	12 – 130	50 – 270
TNZ ZCH	1750 – 195000		•	12 – 130	50 – 270


^{*} mit Passfedernut nach DIN 6885-1

Individualität

Die Zahnkupplung RINGFEDER® TNZ ist nach dem Baukastensystem aufgebaut, wodurch eine hohe Flexibilität zur Zusammenstellung verschiedenster Kupplungsausführungen gewährleistet ist.

Geeignete Komponenten, wie beispielsweise Bremsscheiben und -trommeln, Torsionswellen oder Vorrichtungen für den Vertikaleinbau der Kupplung, können anforderungsgerecht adaptiert werden.

Werkstoffe

Als Standard werden die Zahnnaben und Zahnhülsen aus hochwertigem Vergütungsstahl mit einer Streckgrenze von min. 335 N/mm² hergestellt. Bei speziellen Belastungsfällen, wie beispielsweise dem Einsatz eines Innenspannsatzes oder eines zylindrischen Pressverbandes zum Verbinden von Welle und Nabe, bietet RINGFEDER® spezielle Lösungen aus höherfestem Werkstoff an. Die Abdichtung erfolgt mittels O-Ringen aus NBR.

Die Zahnhülsen werden mittels einer hochwertigen Verschraubung, welche speziell für die RINGFEDER® TNZ entwickelt wurde, zusammengehalten. Die Zentrierung der Kupplungshälfte erfolgt mittels hochfester Passschrauben und selbstsichernden Ganzstahlmuttern.

Aggressive Medien können Kupplungsbauteile, Schrauben und Dichtungselemente angreifen und stellen damit eine Gefahr für die Funktionssicherheit der Kupplung dar. Auf Anfrage können alle RINGFEDER® TNZ Zahnkupplungen auch mit einem langfristigen Korrosionsschutz geliefert werden.

Wuchtempfehlung

Bei Umlaufgeschwindigkeiten von über 30 m/s empfiehlt RINGFEDER® das dynamische Auswuchten nach DIN ISO 21940-11.

Umgebungsbedingungen

Die Standardausführung eignet sich für einen Umgebungstemperaturbereich von -10 °C bis +80 °C. Durch den Einsatz von Spezialdichtungen kann eine Maximaltemperatur von bis zu 120 °C zugelassen werden. Da sehr hohe bzw. sehr niedrige Temperaturen den Einsatz von geeigneten Schmierfetten notwendig machen, ist in solchen Fällen Rücksprache mit RINGFEDER® zu halten. Die Kupplung darf nur in normaler Industrieluft betrieben werden.

Toleranzen und Standards

Wenn nicht anderweitig spezifiziert, beträgt die Bohrungstoleranz ISO H7. Die angegebenen maximalen Bohrungsdurchmesser beziehen sich auf Bohrungen mit Passfedernuten nach DIN 6885-1. Die Naben sind ebenfalls mit zylindrischer Bohrung zum Aufschrumpfen oder anderen kraftschlüssigen Welle-Naben-Verbindungen erhältlich.

Haftungsausschluss

Alle technischen Daten und Hinweise sind unverbindlich. Rechtsansprüche können daraus nicht abgeleitet werden. Der Anwender ist grundsätzlich verpflichtet zu prüfen, ob die dargestellten

Produkte seine Anforderungen erfüllen. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns jederzeit vor.

deen,

Kupplungsauslegung

Der Dimensionierung von torsionssteifen RINGFEDER $^{\circledR}$ Zahnkupplungen wird das Nenndrehmoment T_N und das Maximaldrehmoment T_{max} der Anlage zu Grunde gelegt.

Das maximale Drehmoment der Kupplung T_{Kmax} darf in keinem Betriebszustand (Anlauf, elektrischer Kurzschluss, Blockieren, usw.) überschritten werden.

Gleichung 1)

 $T_N = 9550 \cdot P_N / n_N$

 $egin{array}{lll} T_N &= & \mbox{Anlagennenndrehmoment} & [Nm] \\ P_N &= & \mbox{Anlagenleistung} & [kW] \\ n_N &= & \mbox{Betriebsdrehzahl} & [min^{-1}] \\ \end{array}$

Drehmomentverlauf im Betriebspunkt auf der Abtriebsseite	Drehmomentverlauf	Mindestlastfaktor S∟
Konstant, gleichmäßig ohne Drehmoment- schwankungen	T (Nm)	1
Gleichmäßig mit geringen Schwankungen, leichte Stöße	T (Nm)	1,25
Ungleichmäßig, auch API-671, API-610 mäßige Stöße	T (Nm)	1,5
Ungleichmäßig, schwankend, starke Stöße	T (Nm)	1,75
Andere Drehmomentverläufe		eigene Angabe/ Drehschwingungs- rechnung

Belastung für A	arbeitsmaschine
Gleichmäßige Belastung (S _L >1)	
■ Generator (nicht Schweißgenerator) ■ Bandförderer (gleichmäßig belastet) ■ Kreiselgebläse	■ Kreiselpumpe ■ Rührwerk (für homogene Flüssigkeit)
Ungleichmäßige Belastung (S _L >1,5)	
■ Bandförderer (ungleichmäßig belastet)■ Zahnradpumpe■ Flügelzellenpumpe	■ Kapselgebläse ■ Druckmaschine
Schwere Stöße (S _L >1,75)	
■ Schweißgenerator ■ Mehrzylinder-Kolbenverdichter ■ Erzmühle ■ Kunststoffkalander ■ Gummikalander ■ Refiner ■ Kaltwalzwerk	■ Hackmaschine ■ Rollgang ■ Brecher für Erz oder Gestein ■ Warmwalzwerk ■ Vorstraße ■ Doppelt wirkende Schere ■ Knüppelschere

 S_L = Lastfaktor der Abtriebsseite

Belastung für Arbeitsmaschine

Bestimmung der Kupplungsgröße

Zur Dimensionierung der Zahnkupplung vom Typ TNZ wird das Anlagendrehmoment unter Beachtung eines Betriebsfaktors f verwendet. Bei Antrieben durch E-Motoren wird in Abhängigkeit vom Drehmomentverlauf im Betriebspunkt der Mindestlastfaktor S_L ermittelt, der multipliziert mit dem Ausrichtfaktor S_A den Betriebsfaktor f ergibt.

Bei Antrieben mit wiederkehrenden hohen Stoßmomenten T_S gilt bei

a) nicht reversierendem Drehmoment: $T_{KN} > T_{S}$

b) reversierendem Drehmoment: $T_{KN} > 1,5 \times T_{S}$

Gleichung 2)

$$f = S_L \cdot S_A$$

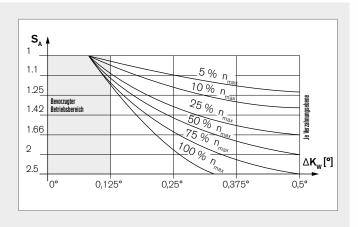
f = BetriebsfaktorS_L = Mindestlastfaktor

S_A = Ausrichtfaktor

Gleichung 3)

$$T_{KN} \ge T_N \cdot f = (9550 \cdot \frac{P_N}{n_N}) \times f$$

 T_{KN} = Kupplungsnenndrehmoment [Nm] nach Paperdaten T_{N} = Anlagennenndrehmoment [Nm] nach Gleichung 1)

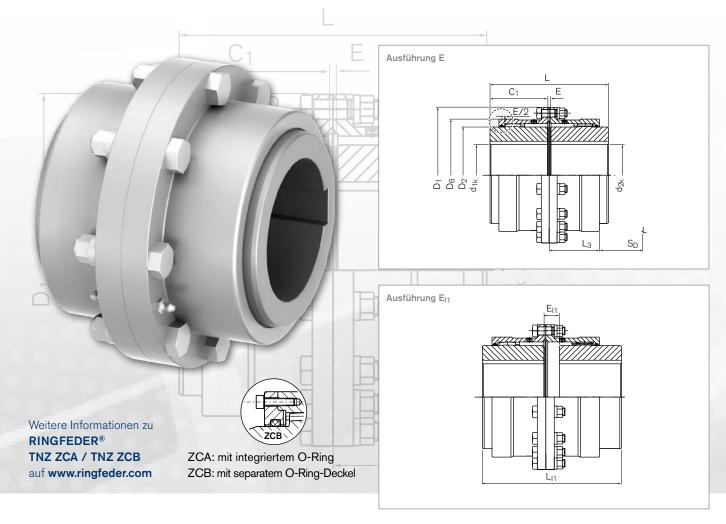

= Betriebsleistung [kW] = Betriebsdrehzahl [min⁻¹]

f = Lastfaktor der AntriebsseiteS_L = Lastfaktor der Abtriebsseite

Ermittlung des Ausrichtfaktors S_A in Abhängigkeit der Winkelverlagerung

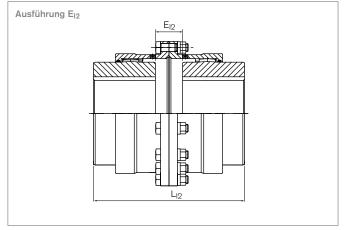
Der Ausrichtfaktor S_A ergibt sich aus dem Verhältnis der Anlagendrehzahl n_{nenn} zur Referenzdrehzahl n_{max} sowie der auftretenden Winkelverlagerung und kann mittels des Diagramms bestimmt werden.

Gewählte Größe überprüfen

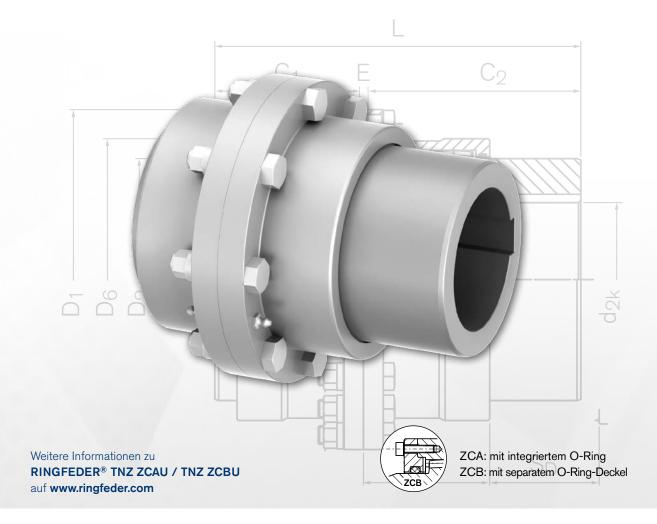

- Das Anlagenstoßmoment muss kleiner als T_{Kmax} der ausgewählten Kupplung sein, andernfalls größere Kupplung wählen.
- Prüfen, ob der Wellendurchmesser nicht die max. zulässige Bohrung überschreitet.
- Drehmomentübertragung durch Welle-Naben-Verbindung prüfen. Sollte die Standardnabenlänge nicht ausreichen, bitte verlängerte Nabe wählen.
- Zulässige Drehzahl der Kupplung beachten. Prüfen, ob dynamisches Wuchten der Kupplung erforderlich ist.

Gre	öße	Drehmoment	Drehzahl
ZCH	ZCA/ZCB	T _{KN}	n _{max}
Nm	Nm	Nm	min ⁻¹
69	69	1750	6000
85	85	2750	4600
107	107	5500	4200
133	133	8500	4000
152	152	13500	3850
179	179	22000	3700
209	209	35000	3200
234	234	43000	2900
254	254	68000	2600
279	279	82000	2300
305	305 305		2100
355	355	195000	1800

Referenz-Betriebsdaten

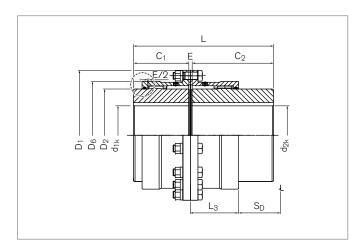


Standardnaben


Die **RINGFEDER® TNZ ZCA** Kupplung ist eine drehsteife, spielbehaftete Zahnkupplung, bestehend aus zwei, mit Passschrauben verbundenen Kupplungshälften.

Die Bauart **RINGFEDER® TNZ ZCB** ist im Vergleich zur TNZ ZCA mit angeschraubtem O-Ring-Träger ausgestattet, die eine vereinfachte Montage durch Änderung der Montagefolge ermöglicht. Dazu abgeschraubten Deckel auf Welle ablegen, Nabe auf Welle montieren, Gehäuse auf Nabe schieben, O-Ring-Träger an Gehäuse befestigen, was bei großen Kupplungen sinnvoll ist.

Eigenschaften

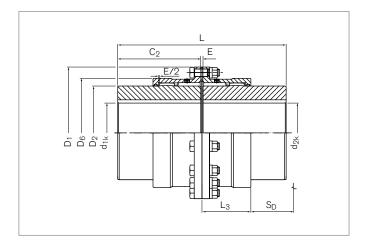

- Drehstarre, aus hochwertigem Schmiedestahl gefertigte Zahnkupplung
- Gleicht winkligen, radialen und axialen Wellenversatz aus
- Mit Spezialdichtungen bis +120 °C einsetzbar
- Kupplungshälften durch Passschrauben zentriert. Anzahl, Bohrung und Lochkreis nach internationalem Standard
- Bohrungen bis 270 mm
- Drehmomente bis $T_{KN} = 195000 \text{ Nm} / T_{Kmax} = 390000 \text{ Nm}$
- Drehzahlen bis n_{max} = 6000 min⁻¹

Standardnabe und verlängerte Universalnabe

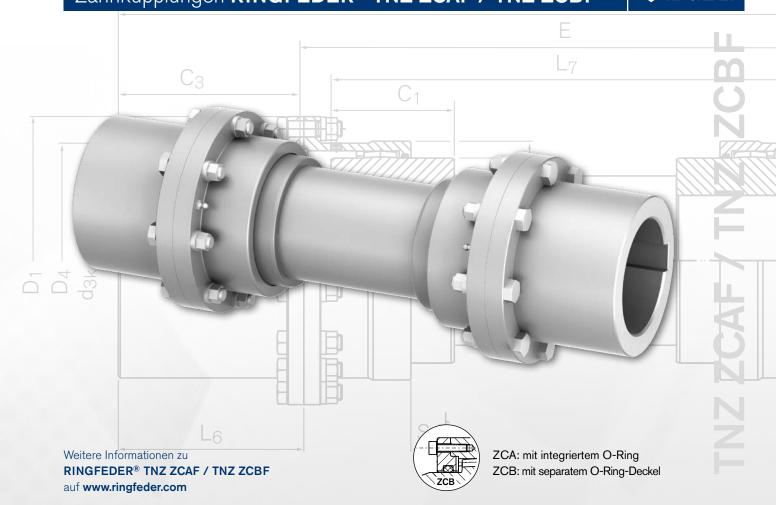
Die **RINGFEDER® TNZ ZCAU** hat im Vergleich zur TNZ ZCA eine verlängerte Nabe, deren Länge bei Bedarf an die anlagenspezifischen Vorgaben angepasst wird.

Die **RINGFEDER® TNZ ZCBU** ist im Vergleich zur TNZ ZCAU mit angeschraubtem O-Ring-Träger ausgestattet, die eine vereinfachte Montage durch Änderung der Montagefolge ermöglicht. Dazu abgeschraubten Deckel auf Welle ablegen, Nabe auf Welle montieren, Gehäuse auf Nabe schieben, O-Ring-Träger an Gehäuse befestigen, was bei großen Kupplungen sinnvoll ist. Wie die Bauart ZCAU hat die ZCBU eine verlängerte Nabe, deren Länge bei Bedarf an die anlagenspezifischen Vorgaben angepasst wird.

Eigenschaften

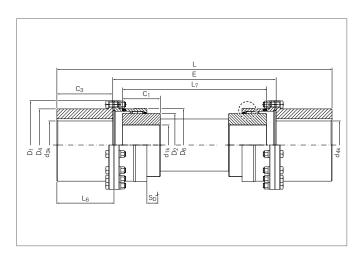

- Drehstarre, aus hochwertigem Schmiedestahl gefertigte Zahnkupplung
- Gleicht winkligen, radialen und axialen Wellenversatz aus
- Mit Spezialdichtungen bis +120 °C einsetzbar
- Kupplungshälften durch Passschrauben zentriert. Anzahl, Bohrung und Lochkreis nach internationalem Standard
- Bohrungen bis 270 mm
- Drehmomente bis $T_{KN} = 195000 \text{ Nm} / T_{Kmax} = 390000 \text{ Nm}$
- Drehzahlen bis n_{max} = 6000 min⁻¹

Verlängerte Universalnaben


Die **RINGFEDER® TNZ ZCAUU** hat im Vergleich zur TNZ ZCA zwei verlängerte Naben, deren Längen bei Bedarf an die anlagenspezifischen Vorgaben angepasst werden.

Die Bauart **RINGFEDER® TNZ ZCBUU** ist im Vergleich zur TNZ ZCAUU mit angeschraubtem O-Ring-Träger ausgestattet, die eine vereinfachte Montage durch Änderung der Montagefolge ermöglicht. Dazu abgeschraubten Deckel auf Welle ablegen, Nabe auf Welle montieren, Gehäuse auf Nabe schieben, O-Ring-Träger an Gehäuse befestigen, was bei großen Kupplungen sinnvoll ist. Wie die Bauart ZCAUU hat die ZCBUU zwei verlängerte Naben, deren Längen bei Bedarf an die anlagenspezifischen Vorgaben angepasst werden.

Eigenschaften

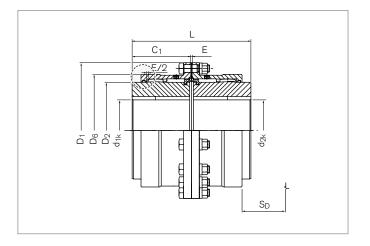

- Drehstarre, aus hochwertigem Schmiedestahl gefertigte Zahnkupplung
- Gleicht winkligen, radialen und axialen Wellenversatz aus
- Mit Spezialdichtungen bis +120 °C einsetzbar
- Kupplungshälften durch Passschrauben zentriert. Anzahl, Bohrung und Lochkreis nach internationalem Standard
- Bohrungen bis 270 mm
- Drehmomente bis $T_{KN} = 195000 \text{ Nm} / T_{Kmax} = 390000 \text{ Nm}$
- Drehzahlen bis n_{max} = 6000 min⁻¹

Zwischenwelle und starre Gegenflansche

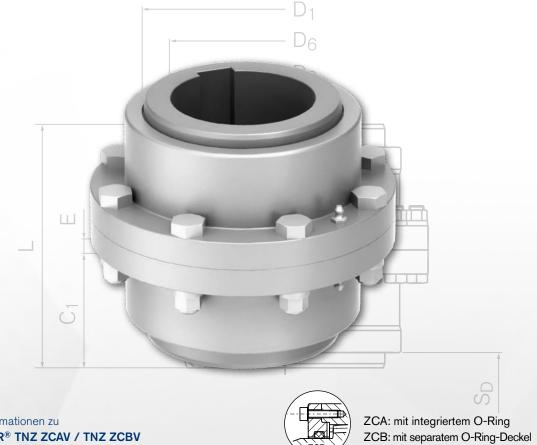
Die Bauart RINGFEDER® TNZ ZCAF wird aus den Kupplungshälften der TNZ ZCA aufgebaut, die mit einer Zwischenwelle und zwei starren Gegenflanschen ergänzt wird. Bei Bedarf wird die Torsionssteifigkeit der Welle zur dynamischen Abstimmung eines Antriebstranges eingestellt. Zudem dient die Zwischenwelle der Überbrückung großer Wellenabstände, kann radial montiert und demontiert werden, ohne dass die angeschlossenen Aggregate verschoben werden müssen.

Die Bauart RINGFEDER® TNZ ZCBF wird aus den Kupplungshälften der TNZ ZCB aufgebaut, die mit einer Zwischenwelle und zwei starren Gegenflanschen ergänzt wird. Bei Bedarf wird die Torsionssteifigkeit der Welle zur dynamischen Abstimmung eines Antriebstranges eingestellt. Zudem dient die Zwischenwelle der

Überbrückung großer Wellenabstände, kann zudem radial montiert und demontiert werden, ohne dass die angeschlossenen Aggregate verschoben werden müssen.


Eigenschaften

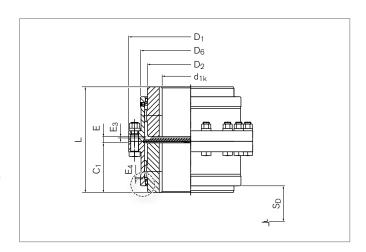
- Drehstarre, aus hochwertigem Schmiedestahl gefertigte Zahnkupplung
- Gleicht winkligen, radialen und axialen Wellenversatz aus
- Mit Spezialdichtungen bis +120 °C einsetzbar
- Kupplungshälften und Gegenflansche durch Passschrauben zentriert. Anzahl, Bohrung und Lochkreis nach internationalem Standard
- Bohrungen bis 330 mm
- Drehmomente bis $T_{KN} = 195000 \text{ Nm} / T_{Kmax} = 390000 \text{ Nm}$
- Torsionssteifigkeit durch Gestaltung der Zwischenwelle beeinflussbar.


Ausführung mit begrenztem Axialspiel

Die doppelkardanischen Ausführungen RINGFEDER® TNZ ZCAK und RINGFEDER® TNZ ZCBK sind mit Axialspielbegrenzung ausgestattete Varianten der TNZ ZCA bzw. TNZ ZCB. Die Axialspielbegrenzung wird zur axialen Fixierung einer gleitgelagerten Welle verwendet. So kann der Rotor eines gleitgelagerten Elektromotors über die Kupplung am Lager einer Arbeitsmaschine in einem gewünschten Toleranzbereich ausgerichtet werden, damit bei einem erneuten Hochlauf der Rotor innerhalb seiner magnetischen Mitte verbleibt. Durch die Axialspielbegrenzung wird der Ausgleich der winkligen und radialen Wellenversätze eingeschränkt. Im Gegensatz zur TNZ ZCAK mit integriertem O-Ring verfügt die TNZ ZCBK über angeschraubte, separate O-Ring-Träger.

Eigenschaften

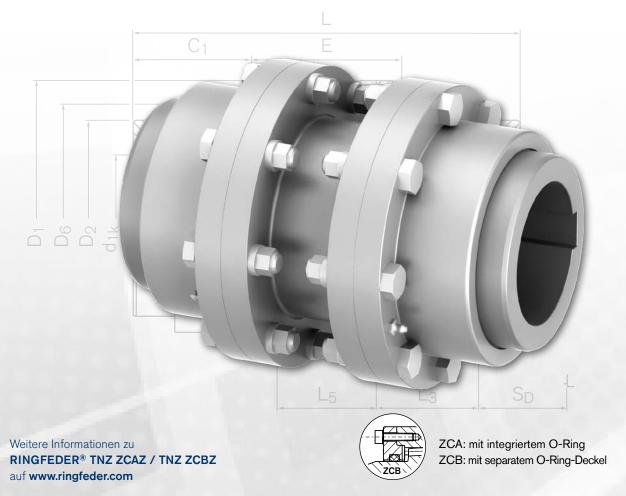
- Drehstarre, aus hochwertigem Schmiedestahl gefertigte Zahnkupplung
- Gleicht winkligen, radialen und axialen Wellenversatz aus
- Mit Spezialdichtungen bis +120 °C einsetzbar
- Kupplungshälften durch Passschrauben zentriert. Anzahl,
 Bohrung und Lochkreis nach internationalem Standard
- Bohrungen bis 270 mm
- Drehmomente bis $T_{KN} = 195000 \text{ Nm} / T_{Kmax} = 390000 \text{ Nm}$
- Drehzahlen bis n_{max} = 6000 min⁻¹



Weitere Informationen zu
RINGFEDER® TNZ ZCAV / TNZ ZCBV
auf www.ringfeder.com

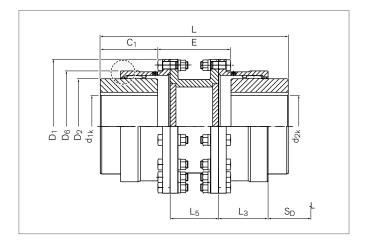
Vertikale Ausführung

Die **RINGFEDER® TNZ ZCAV** ist für den vertikalen Einbau geeignet. Dazu wird die TNZ ZCA mit Stützplatten ausgestattet, wodurch die Gehäuse in ihrer vertikalen Position gehalten werden.


Die Bauart **RINGFEDER® TNZ ZCBV** ist für den vertikalen Einbau geeignet. Dazu wird die TNZ ZCB mit Stützplatten ausgestattet, wodurch die Gehäuse in ihrer vertikalen Position gehalten werden.

Eigenschaften

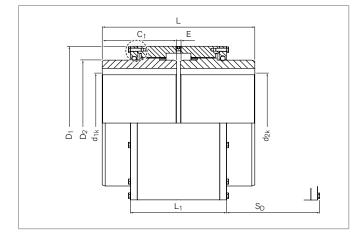
- Drehstarre, aus hochwertigem Schmiedestahl gefertigte Zahnkupplung
- Gleicht winkligen, radialen und axialen Wellenversatz aus
- Mit Spezialdichtungen bis +120 °C einsetzbar
- Kupplungshälften durch Passschrauben zentriert. Anzahl, Bohrung und Lochkreis nach internationalem Standard
- Bohrungen bis 270 mm
- Drehmomente bis $T_{KN} = 195000 \text{ Nm} / T_{Kmax} = 390000 \text{ Nm}$
- Drehzahlen bis n_{max} = 6000 min⁻¹



Standardnaben und Zwischenstück

Die RINGFEDER® TNZ ZCAZ wird um ein Zwischenstück ergänzt, das zwischen den Gehäusen einer TNZ ZCA über Passschrauben eingebaut wird. Das Zwischenstück dient der Überbrückung großer Wellenabstände, kann zudem radial montiert und demontiert werden, ohne dass die angeschlossenen Aggregate verschoben werden müssen.

Die Bauart **RINGFEDER® TNZ ZCBZ** ist im Vergleich zur TNZ ZCAZ mit angeschraubtem O-Ring-Träger ausgestattet, die eine vereinfachte Montage durch Änderung der Montagefolge ermöglicht. Die Bauart TNZ ZCBZ wird um ein Zwischenstück ergänzt, das zwischen den Gehäusen einer TNZ ZCB über Passschrauben eingebaut wird.


Eigenschaften

- Drehstarre, aus hochwertigem Schmiedestahl gefertigte Zahnkupplung
- Gleicht winkligen, radialen und axialen Wellenversatz aus
- Mit Spezialdichtungen bis +120 °C einsetzbar
- Kupplungshälften und Zwischenstück durch Passschrauben zentriert. Anzahl, Bohrung und Lochkreis nach internationalem Standard
- Bohrungen bis 270 mm
- Drehmomente bis $T_{KN} = 195000 \text{ Nm} / T_{Kmax} = 390000 \text{ Nm}$

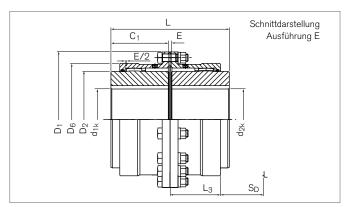
Standardnaben mit einteiligem Gehäuse

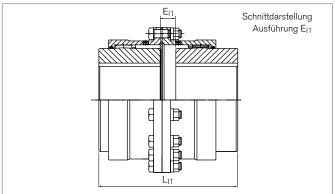

Die RINGFEDER® TNZ ZCH besteht aus einem einteiligen Gehäuse mit beidseitig angebrachten O-Ring-Trägern und zwei Naben der TNZ ZCA. Kombinationen mit langen Naben (ZCHU und ZCHUU) verfügbar.

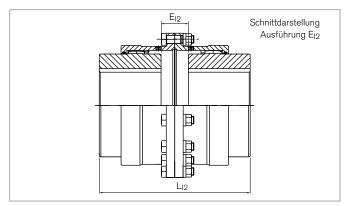
Eigenschaften

- Drehstarre, aus hochwertigem Schmiedestahl gefertigte Zahnkupplung
- Gleicht winkligen, radialen und axialen Wellenversatz aus
- Mit Spezialdichtungen bis +120 °C einsetzbar
- Kompakte Bauweise durch einteiliges Gehäuse
- Bohrungen bis 270 mm
- Drehmomente bis $T_{KN} = 195000 \text{ Nm} / T_{Kmax} = 390000 \text{ Nm}$
- Drehzahlen bis n_{max} = 6000 min⁻¹

DE Tech Paper


08.2019


Zahnkupplungen


RINGFEDER® TNZ ZCA / TNZ ZCB

Standardnaben

Bezeio	chnung	Größe	T _{KN}	T _{Kmax}	n _{max}	d _{1k} min-max	d _{2k} min-max	D ₁	D_2	D ₆	C ₁
ZCA	ZCB		Nm	Nm	1/min	mm	mm	mm	mm	mm	mm
XC2106		69	1750	3500	6000	12 - 50	12 - 50	111	69	81,5	43
XC2108		85	2750	5500	4600	18 - 60	18 - 60	152	85	103,5	50
XC2110	XC3110	107	5500	11000	4200	28 - 75	28 - 75	178	107	127,5	62
XC2113	XC3113	133	8500	17000	4000	40 - 95	40 - 95	213	133	156	76
XC2115	XC3115	152	13500	27000	3850	50 - 110	50 - 110	240	152	181	90
XC2117	XC3117	179	22000	44000	3700	60 - 130	60 - 130	280	178	209	105
XC2120	XC3120	209	35000	70000	3200	70 - 155	70 - 155	318	209	245,5	120
XC2123	XC3123	234	43000	86000	2900	85 - 175	85 - 175	346	234	274	135
XC2125	XC3125	254	68000	136000	2600	95 - 190	95 - 190	389	254	307	150
XC2127	XC3127	279	82000	164000	2300	110 - 210	110 - 210	425	279	334,5	175
XC2130	XC3130	305	150000	300000	2100	120 - 230	120 - 230	457	305	366	190
XC2135	XC3135	355	195000	390000	1800	130 - 270	130 - 270	527	355	423	220

Fortsetzung auf nächster Seite

DE

Tech Paper

08.2019

Zahnkupplungen RINGFEDER® TNZ ZCA / TNZ ZCB

Bezeio	hnung	Größe	E	E _{l1}	E _{l2}	L	L _{I1}	L _{I2}	L ₃	S _D	Δ K _r	ΔK _w	J	V _{GR}	Gw _{sb}
ZCA	ZCB		mm	mm	mm	mm	mm	mm	mm	mm	mm	Grad	10 ⁻³ kgm ²	dm³	kg
XC2106		69	3	5	7	89	91	93	39	30	0,42	2 x 0,5	4	0,07	4,1
XC2108		85	3	8	13	103	108	113	46	37	0,51	2 x 0,5	18	0,08	8,7
XC2110	XC3110	107	3	14	25	127	138	149	59	48	0,66	2 x 0,5	40	0,13	14,4
XC2113	XC3113	133	5	12	19	157	164	171	69	56	0,77	2 x 0,5	102	0,22	25,6
XC2115	XC3115	152	5	24	43	185	204	223	83	70	0,99	2 x 0,5	187	0,38	37,3
XC2117	XC3117	179	6	27	48	216	237	258	93	79	1,15	2 x 0,5	407	0,58	58,9
XC2120	XC3120	209	6	32	58	246	272	298	106	92	1,33	2 x 0,5	801	0,75	88,6
XC2123	XC3123	234	8	37	66	278	307	336	118	103	1,5	2 x 0,5	1248	1,25	116,1
XC2125	XC3125	254	8	50	92	308	350	392	138	120	1,75	2 x 0,5	2370	1,92	166,0
XC2127	XC3127	279	8	53	98	358	403	448	154	136	1,99	2 x 0,5	3638	2,67	219,2
XC2130	XC3130	305	8	58	108	388	438	488	166	148	2,16	2 x 0,5	4830	3,33	265,9
XC2135	XC3135	355	10	72	134	450	512	574	193	174	2,55	2 x 0,5	10022	5,00	415,8

Erklärungen

T_{KN} = Übertragbares Nenn-Drehmoment

 T_{Kmax} = Max. übertragbares Drehmoment

der Kupplung = Max. Drehzahl

 \mathbf{n}_{max} = Max. Drehzahl \mathbf{d}_{1kmin} ; \mathbf{d}_{2kmin} = Min. Bohrungsdurchmesser $\mathbf{d}_1/\mathbf{d}_2$

mit Passfedernut nach DIN 6885-1

d_{1kmax};d_{2kmax}= Max. Bohrungsdurchmesser d₁/d₂ mit Passfedernut nach DIN 6885-1

D₁ = Außendurchmesser

D₂ = Außendurchmesser NabeD₆ = Durchmesser

C₁ = Geführte Länge in Nabenbohrung

E = Spaltbreite zwischen linkem und

rechtem Bauteil

 $\mathbf{E_{l1}};\,\mathbf{E_{l2}}=\,$ Spaltbreite zwischen linkem und rechtem

Bauteil der invertierten Variante 1/2

= Gesamtlänge

L_{I1}; L_{I2} = Gesamtlänge der invertierten Variante 1/2

L₃ = Länge

S_D = Demontage Freiraum

 $\Delta \mathbf{K_r}$ = Maximal zulässiger Versatz radial $\Delta \mathbf{K_w}$ = Maximal zulässiger Versatz radial

J = Trägheitsmoment ges.

V_{GR} = Fettmenge

Gw_{sb} = Gewicht bei kleinstem Bohrungsdurchmesser

Bestellbeispiel

Bezeichnung	Größe	d _{1k}	d _{2k}	Weitere Angaben
XC2113	133	70	90	*

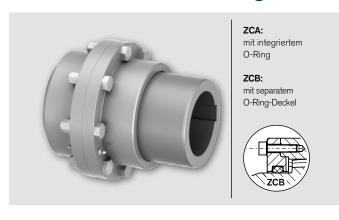
Ohne weitere Angaben liefern wir als Standard: Nut nach DIN 6885-1, Nutbreitentoleranz P9, Bohrungstoleranz H7; optional mit Stellschraube

Weitere Informationen zu

RINGFEDER® TNZ ZCA / TNZ ZCB auf www.ringfeder.com

Haftungsausschluss

Alle technischen Daten und Hinweise sind unverbindlich. Rechtsansprüche können daraus nicht abgeleitet werden. Der Anwender ist grundsätzlich verpflichtet zu prüfen, ob die dargestellten Produkte seine Anforderungen erfüllen. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns jederzeit vor.


DE Tech Paper

08.2019

Zahnkupplungen

RINGFEDER® TNZ ZCAU / TNZ ZCBU

Standardnabe und verlängerte Universalnabe

Bezeichnung		Größe	T _{KN}	T _{Kmax}	n _{max}	d _{1k} min-max	d _{2k} min-max	D ₁	D_2	D ₆	C ₁	C ₂
ZCAU	ZCBU		Nm	Nm	1/min	mm	mm	mm	mm	mm	mm	mm
XC2206		69	1750	3500	6000	12 - 50	12 - 50	111	69	81,5	43	105
XC2208		85	2750	5500	4600	18 - 60	18 - 60	152	85	103,5	50	115
XC2210	XC3210	107	5500	11000	4200	28 - 75	28 - 75	178	107	127,5	62	130
XC2213	XC3213	133	8500	17000	4000	40 - 95	40 - 95	213	133	156	76	150
XC2215	XC3215	152	13500	27000	3850	50 - 110	50 - 110	240	152	181	90	170
XC2217	XC3217	179	22000	44000	3700	60 - 130	60 - 130	280	178	209	105	185
XC2220	XC3220	209	35000	70000	3200	70 - 155	70 - 155	318	209	245,5	120	215
XC2223	XC3223	234	43000	86000	2900	85 - 175	85 - 175	346	234	274	135	245
XC2225	XC3225	254	68000	136000	2600	95 - 190	95 - 190	389	254	307	150	295
XC2227	XC3227	279	82000	164000	2300	110 - 210	110 - 210	425	279	334,5	175	300
XC2230	XC3230	305	150000	300000	2100	120 - 230	120 - 230	457	305	366	190	305
XC2235	XC3235	355	195000	390000	1800	130 - 270	130 - 270	527	355	423	220	310

Bezeio	chnung	Größe	E	E _{l1}	L	L _{I1}	L ₃	S _D	ΔK _r	ΔK _w	J	V _{GR}	Gw _{sb}
ZCAU	ZCBU		mm	mm	mm	mm	mm	mm	mm	Grad	10 ⁻³ kgm ²	dm³	kg
XC2206		69	3	5	151	153	39	80	0,42	2 x 0,5	5	0,07	5,8
XC2208		85	3	8	168	173	46	83	0,51	2 x 0,5	18	0,08	11,2
XC2210	XC3210	107	3	14	195	206	59	85	0,66	2 x 0,5	40	0,13	18,6
XC2213	XC3213	133	5	12	231	238	69	100	0,77	2 x 0,5	120	0,22	32,3
XC2215	XC3215	152	5	24	265	284	83	106	1,00	2 x 0,5	220	0,38	46,7
XC2217	XC3217	179	6	27	296	317	93	115	1,15	2 x 0,5	469	0,58	72,0
XC2220	XC3220	209	6	32	341	367	106	132	1,33	2 x 0,5	939	0,75	110,1
XC2223	XC3223	234	8	37	388	417	118	151	1,5	2 x 0,5	1498	1,25	146,4
XC2225	XC3225	254	8	50	453	498	138	181	1,75	2 x 0,5	2827	1,92	213,4
XC2227	XC3227	279	8	53	483	528	154	185	1,99	2 x 0,5	4209	2,67	266,8
XC2230	XC3230	305	8	58	503	553	166	178	2,16	2 x 0,5	5580	3,33	317,9
XC2235	XC3235	355	10	72	540	602	193	174	2,55	2 x 0,5	11104	5,00	470,3

Tragfähigkeit der Wellen-Naben-Verbindung überprüfen

Naben vorgebohrt, Bohrungsdurchmesser etwa 2 mm kleiner als kleinste Fertigbohrung

Bei invertierter Standardnabe beachte E_{I1} und L_{I1}

Fortsetzung auf nächster Seite

08.2019

Zahnkupplungen RINGFEDER® TNZ ZCAU / TNZ ZCBU

Erklärungen

T _{KN}	= Übertragbares Nenn-Drehmoment	D_2	= Außendurchmesser Nabe	L _{l1}	= Gesamtlänge der invertierten Variante 1/2
T _{Kmax}	= Max. übertragbares Drehmoment	D_6	= Durchmesser	L ₃	= Länge
	der Kupplung	C ₁	= Geführte Länge in Nabenbohrung	S_D	= Demontage Freiraum
n _{max}	= Max. Drehzahl	C_2	= Geführte Länge in Nabenbohrung	ΔK_r	= Maximal zulässiger Versatz radial
d _{1kmin} ;d _{2kmir}	= Min. Bohrungsdurchmesser d ₁ /d ₂ mit Passfedernut nach DIN 6885-1	E	Spaltbreite zwischen linkem und rechtem Bauteil	$\Delta K_{\mathbf{w}}$	= Maximal zulässiger Versatz radial
d _{1kmax} ;d _{2kma}	x= Max. Bohrungsdurchmesser d ₁ /d ₂ mit Passfedernut nach DIN 6885-1	E _{l1}	= Spaltbreite zwischen linkem und rechtem Bauteil der invertierten Variante 1/2	y V _{GR}	= Trägheitsmoment ges.= Fettmenge
D ₁	= Außendurchmesser	L	= Gesamtlänge	Gw _{sb}	= Gwsb = Gewicht bei kleinstem Bohrungsdurchmesser

Bestellbeispiel

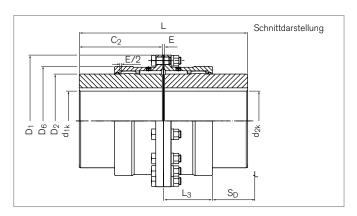
Bezeichnung	Größe	d _{1k}	d _{2k}	Weitere Angaben
XC3215	152	90	110	*

^{*)} Ohne weitere Angaben liefern wir als Standard: Nut nach DIN 6885-1, Nutbreitentoleranz P9, Bohrungstoleranz H7; optional mit Stellschraube

Weitere Informationen zu
RINGFEDER® TNZ ZCAU / TNZ ZCBU
auf www.ringfeder.com

Haftungsausschluss

Alle technischen Daten und Hinweise sind unverbindlich. Rechtsansprüche können daraus nicht abgeleitet werden. Der Anwender ist grundsätzlich verpflichtet zu prüfen, ob die dargestellten Produkte seine Anforderungen erfüllen. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns jederzeit vor.



DE Tech Paper 08.2019

Zahnkupplungen RINGFEDER® TNZ ZCAUU / TNZ ZCBUU

Verlängerte Universalnaben

Bezeio	chnung	Größe	T _{KN}	T _{Kmax}	n _{max}	d _{1k} min-max	d _{2k} min-max	D ₁	D_2	D ₆	C ₂
ZCAUU	ZCBUU		Nm	Nm	1/min	mm	mm	mm	mm	mm	mm
XC2306		69	1750	3500	6000	12 - 50	12 - 50	111	69	81,5	105
XC2308		85	2750	5500	4600	18 - 60	18 - 60	152	85	103,5	115
XC2310	XC3310	107	5500	11000	4200	28 - 75	28 - 75	178	107	127,5	130
XC2313	XC3313	133	8500	17000	4000	40 - 95	40 - 95	213	133	156	150
XC2315	XC3315	152	13500	27000	3850	50 - 110	50 - 110	240	152	181	170
XC2317	XC3317	179	22000	44000	3700	60 - 130	60 - 130	280	179	209	185
XC2320	XC3320	209	35000	70000	3200	70 - 155	70 - 155	318	209	245,5	215
XC2323	XC3323	234	43000	86000	2900	85 - 175	85 - 175	346	234	274	245
XC2325	XC3325	254	68000	136000	2600	95 - 190	95 - 190	389	254	307	295
XC2327	XC3327	279	82000	164000	2300	110 - 210	110 - 210	425	279	334,5	300
XC2330	XC3330	305	150000	300000	2100	120 - 230	120 - 230	457	305	366	305
XC2335	XC3335	355	195000	390000	1800	130 - 270	130 - 270	527	355	423	310

Fortsetzung auf nächster Seite

08.2019

Zahnkupplungen RINGFEDER® TNZ ZCAUU / TNZ ZCBUU

Bezeio	hnung	Größe	E	L	L ₃	S _D	ΔK _r	Δ K _w	J	V _{GR}	Gw _{sb}
ZCAUU	ZCBUU		mm	mm	mm	mm	mm		10 ⁻³ kgm ²	dm³	kg
XC2306		69	3	213	39	80	0,42	2 x 0,5	6	0,07	7,5
XC2308		85	3	233	46	83	0,51	2 x 0,5	23	0,08	14,0
XC2310	XC3310	107	3	263	59	85	0,66	2 x 0,5	54	0,13	23,1
XC2313	XC3313	133	5	305	69	100	0,77	2 x 0,5	137	0,22	39,8
XC2315	XC3315	152	5	345	83	106	0,99	2 x 0,5	252	0,38	57,1
XC2317	XC3317	179	6	376	93	115	1,15	2 x 0,5	530	0,58	86,0
XC2320	XC3320	209	6	436	106	132	1,33	2 x 0,5	1077	0,75	133,1
XC2323	XC3323	234	8	498	118	151	1,5	2 x 0,5	1748	1,25	179,1
XC2325	XC3325	254	8	598	138	181	1,75	2 x 0,5	3283	1,92	263,7
XC2327	XC3327	279	8	608	154	185	1,99	2 x 0,5	4780	2,67	318,1
XC2330	XC3330	305	8	618	166	178	2,13	2 x 0,5	6329	3,33	374,4
XC2335	XC3335	355	10	630	193	174	2,55	2 x 0,5	12186	5	531,4

Erklärungen

T _{KN}	= Übertragbares Nenn-Drehmoment	D ₁	= Außendurchmesser	L ₃	= Länge
T _{Kmax}	= Max. übertragbares Drehmoment	D_2	= Außendurchmesser Nabe	S_D	= Demontage Freiraum
	der Kupplung	D_6	= Durchmesser	ΔK_r	= Maximal zulässiger Versatz radial
n _{max}	= Max. Drehzahl	C_2	= Geführte Länge in Nabenbohrung	ΔK_w	= Maximal zulässiger Versatz radial
d _{1kmin} ;d _{2kmin}	= Min. Bohrungsdurchmesser d_1/d_2	E	= Spaltbreite zwischen linkem und	J	= Trägheitsmoment ges.
	mit Passfedernut nach DIN 6885-1		rechtem Bauteil	$v_{\sf GR}$	= Fettmenge
d _{1kmax} ;d _{2kma}	x= Max. Bohrungsdurchmesser d ₁ /d ₂ mit Passfedernut nach DIN 6885-1	L	= Gesamtlänge	Gw_{sb}	= Gewicht bei kleinstem Bohrungsdurchmesser

Bestellbeispiel

Bezeichnung	Größe	d _{1k}	d _{2k}	Weitere Angaben
XC2325	254	150	180	*

^{*)} Ohne weitere Angaben liefern wir als Standard: Nut nach DIN 6885-1, Nutbreitentoleranz P9, Bohrungstoleranz H7; optional mit Stellschraube

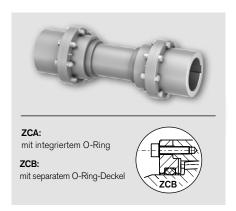
Weitere Informationen zu

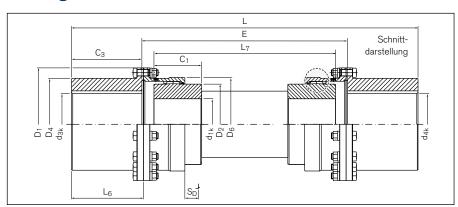
RINGFEDER® TNZ ZCAUU / TNZ ZCBUU auf www.ringfeder.com

Haftungsausschluss

Alle technischen Daten und Hinweise sind unverbindlich. Rechtsansprüche können daraus nicht abgeleitet werden. Der Anwender ist grundsätzlich verpflichtet zu prüfen, ob die dargestellten Produkte seine Anforderungen erfüllen. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns jederzeit vor.

Tragfähigkeit der Wellen-Naben-Verbindung überprüfen
 Naben vorgebohrt, Bohrungsdurchmesser etwa 2 mm kleiner als kleinste Fertigbohrung


DE Tech Paper


08.2019

Zahnkupplungen

RINGFEDER® TNZ ZCAF / TNZ ZCBF

Zwischenwelle und starre Gegenflansche

Bezeio	chnung	Größe	T _{KN}	T _{Kmax}	n _{max}	d _{1k}	d _{3k} min-max	d _{4k} min-max	D ₁	D_2	D ₄	D ₆	C ₁	C ₃
ZCAF	ZCBF		Nm	Nm	1/min	mm	mm	mm	mm	mm	mm	mm	mm	mm
XC6106		69	1750	3500	\uparrow	12 - 50	12 - 55	0 - 55	111	69	80	81,5	43	40
XC6108		85	2750	5500		18 - 60	18 - 75	0 - 75	152	85	103,5	103,5	50	47
XC6110	XC7110	107	5500	11000		28 - 75	28 - 95	0 - 95	178	107	126	127,5	62	58
XC6113	XC7113	133	8500	17000		40 - 95	40 - 110	0 - 110	213	133	152	156	76	74
XC6115	XC7115	152	13500	27000	Θ.	50 - 110	50 - 130	0 - 130	240	152	178	181	90	87
XC6117	XC7117	179	22000	44000	ıfrag	60 - 130	60 - 155	55 - 155	280	179	208	209	105	101
XC6120	XC7120	209	35000	70000	Auf Anfrage	70 - 155	70 - 180	65 - 180	318	209	245	245,5	120	113
XC6123	XC7123	234	43000	86000	Ψ	85 - 175	85 - 200	80 - 200	346	234	270	274	135	129
XC6125	XC7125	254	68000	136000		95 - 190	95 - 230	90 - 230	389	254	305	307	150	150
XC6127	XC7127	279	82000	164000		110 - 210	110 - 250	100 - 250	425	279	330	334,5	175	175
XC6130	XC7130	305	150000	300000		120 - 230	120 - 280	120 - 280	457	305	362	366	190	190
XC6135	XC7135	355	195000	390000	↓	130 - 270	130 - 330	150 - 330	527	355	419	423	220	220

Bezeio	chnung	Größe	E _{min}	L	L ₆	L _{7min}	S _D	Δ K _r	Δ K _w	J	V _{GR}	Gw _{sb}
ZCAF	ZCBF		mm	mm	mm	mm	mm	mm	Grad	10 ⁻³ kgm ²	dm³	kg
XC6106		69	99	179	43,5	86	30	\uparrow	2 x 0,5	\uparrow	2 x 0,035	\uparrow
XC6108		85	119	213	50,5	100	37		2 x 0,5		2 x 0,040	
XC6110	XC7110	107	155	271	61,5	124	48		2 x 0,5		2 x 0,065	
XC6113	XC7113	133	177	325	77,5	152	56		2 x 0,5		2 x 0,110	
XC6115	XC7115	152	229	403	90,5	180	70	п	2 x 0,5	п	2 x 0,190	п
XC6117	XC7117	179	264	466	104	210	79	Abhängig von	2 x 0,5	Abhängig von E	2 x 0,290	Abhängig von E
XC6120	XC7120	209	304	530	116,5	240	92	i.gui	2 x 0,5	ängi	2 x 0,375	ängi
XC6123	XC7123	234	344	602	133	270	103	Abhi	2 x 0,5	Abhi	2 x 0,625	Abhi
XC6125	XC7125	254	400	700	154	300	120	l ì	2 x 0,5	Ì	2 x 0,960	Ì
XC6127	XC7127	279	456	806	179	350	136		2 x 0,5		2 x 1,335	
XC6130	XC7130	305	500	880	196	380	148		2 x 0,5		2 x 1,665	
XC6135	XC7135	355	590	1040	228	440	174	↓	2 x 0,5	↓	2 x 2,500	\downarrow

■ Tragfähigkeit der Wellen-Naben-Verbindung überprüfen

Naben vorgebohrt, Bohrungsdurchmesser etwa 2 mm kleiner als kleinste Fertigbohrung, ohne Zwischenwelle

Fortsetzung auf nächster Seite

08.2019

Zahnkupplungen RINGFEDER® TNZ ZCAF / TNZ ZCBF

Erklärungen

T _{KN}	Übertragbares Nenn-DrehmomentMax. übertragbares Drehmoment	D ₁	= Außendurchmesser = Außendurchmesser Nabe	L _{7min}	Min. Länge des mittleren Verbindungsteiles
· Killax	der Kupplung	D ₄	= Außendurchmesser Nabe	S_{D}	= Demontage Freiraum
n_{max}	= Max. Drehzahl	D_6	= Durchmesser	ΔK_r	= Maximal zulässiger Versatz radial
d _{1kmin} ;		C ₁	= Geführte Länge in Nabenbohrung	ΔK_w	= Maximal zulässiger Versatz radial
d _{3kmin} ;	= Min. Bohrungsdurchmesser d ₁ /d ₃ /	C ₃	= Geführte Länge in Nabenbohrung	J	= Trägheitsmoment ges.
~4KIIIII)	d ₄ mit Passfedernut nach DIN 6885-1	Emin	= Min. Spaltbreite zwischen linkem und	V_{GR}	= Fettmenge
d _{1kmax} ;			rechtem Bauteil	Gw_{sb}	= Gewicht bei kleinstem
d _{3kmax} ;		L	= Gesamtlänge		Bohrungsdurchmesser
d _{4kmax}	 Max. Bohrungsdurchmesser d₁/d₃/ d₄ mit Passfedernut nach DIN 6885-1 	L ₆	= Grundkörperlänge		

Bestellbeispiel

Bezeichnung	Größe	d _{3k}	d _{4k}	Weitere Angaben
XC6127	279	180	230	*

^{*)} Ohne weitere Angaben liefern wir als Standard: Nut nach DIN 6885-1, Nutbreitentoleranz P9, Bohrungstoleranz H7; optional mit Stellschraube

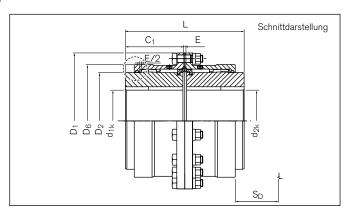
Weitere Informationen zu

RINGFEDER® TNZ ZCAF / TNZ ZCBF auf www.ringfeder.com

Haftungsausschluss

Alle technischen Daten und Hinweise sind unverbindlich. Rechtsansprüche können daraus nicht abgeleitet werden. Der Anwender ist grundsätzlich verpflichtet zu prüfen, ob die dargestellten Produkte seine Anforderungen erfüllen. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns jederzeit vor.

DE Tech Paper


08.2019

Zahnkupplungen

RINGFEDER® TNZ ZCAK / TNZ ZCBK

Ausführung mit begrenztem Axialspiel

Bezeio	chnung	Größe	T _{KN}	T _{Kmax}	n _{max}	d _{1k} min-max	d _{2k} min-max	D ₁	D_2	D ₆
ZCAK	ZCBK		Nm	Nm	1/min	mm	mm	mm	mm	mm
XC2706		69	1750	3500	6000	12 - 50	12 - 50	111	69	81,5
XC2708		85	2750	5500	4600	18 - 60	18 - 60	152	85	103,5
XC2710	XC3710	107	5500	11000	4200	28 - 75	28 - 75	178	107	127,5
XC2713	XC3713	133	8500	17000	4000	40 - 95	40 - 95	213	133	156
XC2715	XC3715	152	13500	27000	3850	50 - 110	50 - 110	240	152	181
XC2717	XC3717	179	22000	44000	3700	60 - 130	60 - 130	280	179	209
XC2720	XC3720	209	35000	70000	3200	70 - 155	70 - 155	318	209	245,5
XC2723	XC3723	234	43000	86000	2900	85 - 175	85 - 175	346	234	274
XC2725	XC3725	254	68000	136000	2600	95 - 190	95 - 190	389	254	307
XC2727	XC3727	279	82000	164000	2300	110 - 210	110 - 210	425	279	334,5
XC2730	XC3730	305	150000	300000	2100	120 - 230	120 - 230	457	305	366
XC2735	XC3735	355	195000	390000	1800	130 - 270	130 - 270	527	355	423

Axialspiel je nach Kupplungsgröße einstellbar

Bezeio	chnung	Größe	C ₁	E	L	S _D	J	V _{GR}	Gw _{sb}
ZCAK	ZCBK		mm	mm	mm	mm	10 ⁻³ kgm²	dm³	kg
XC2706		69	43	3	89	30	4	2 x 0,035	4,0
XC2708		85	50	3	103	37	18	2 x 0,040	8,4
XC2710	XC3710	107	62	3	127	48	40	2 x 0,065	14,1
XC2713	XC3713	133	76	5	157	56	102	2 x 0,110	24,8
XC2715	XC3715	152	90	5	185	70	187	2 x 0,190	36,4
XC2717	XC3717	179	105	6	216	79	407	2 x 0,290	58,0
XC2720	XC3720	209	120	6	245	92	801	2 x 0,375	87,0
XC2723	XC3723	234	135	8	278	103	1248	2 x 0,625	113,7
XC2725	XC3725	254	150	8	308	120	2370	2 x 0,960	163,1
XC2727	XC3727	279	175	8	358	136	3638	2 x 1,335	215,4
XC2730	XC3730	305	190	8	388	148	4830	2 x 1,665	261,5
XC2735	XC3735	355	220	10	450	174	10022	2 x 2,500	409,2

Tragfähigkeit der Wellen-Naben-Verbindung überprüfen

Fortsetzung auf nächster Seite

28

 $[\]blacksquare$ Naben vorgebohrt, Bohrungsdurchmesser etwa 2 mm kleiner als kleinste Fertigbohrung

08.2019

Zahnkupplungen RINGFEDER® TNZ ZCAK / TNZ ZCBK

Erklärungen

T_{KN} = Übertragbares Nenn-Drehmoment
T_{Kmax} = Max. übertragbares Drehmoment
der Kupplung
n_{max} = Max. Drehzahl

d_{1kmin};**d**_{2kmin} = Min. Bohrungsdurchmesser d₁/d₂ mit Passfedernut nach DIN 6885-1

 $\mathbf{d_{1kmax}}; \mathbf{d_{2kmax}} = \text{Max.}$ Bohrungsdurchmesser $\mathbf{d_1}/\mathbf{d_2}$ mit Passfedernut nach DIN 6885-1

nt **D₁** t **D₂ D₆**

L

= Außendurchmesser = Außendurchmesser Nabe

= Durchmesser

C₁ = Geführte Länge in Nabenbohrung
 E = Spaltbreite zwischen linkem und rechtem

Bauteil = Gesamtlänge **S**_D = Demontage Freiraum

J = Trägheitsmoment ges.

V_{GR} = Fettmenge

Gw_{sb} = Gewicht bei kleinstem Bohrungsdurchmesser

Bestellbeispiel

Bezeichnung	Größe	d _{1k}	d _{2k}	Weitere Angaben
XC2720	209	155	155	*

^{*)} Ohne weitere Angaben liefern wir als Standard: Nut nach DIN 6885-1, Nutbreitentoleranz P9, Bohrungstoleranz H7; optional mit Stellschraube

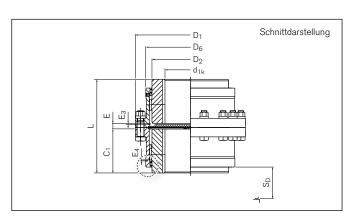
Weitere Informationen zu

RINGFEDER® TNZ ZCAK / TNZ ZCBK auf www.ringfeder.com

Haftungsausschluss

Alle technischen Daten und Hinweise sind unverbindlich. Rechtsansprüche können daraus nicht abgeleitet werden. Der Anwender ist grundsätzlich verpflichtet zu prüfen, ob die dargestellten Produkte seine Anforderungen erfüllen. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns jederzeit vor.

DE Tech Paper


08.2019

Zahnkupplungen

RINGFEDER® TNZ ZCAV / TNZ ZCBV

Vertikale Ausführung

Bezeio	chnung	Größe	T _{KN}	T _{Kmax}	n _{max}	d _{1k} min-max	d _{2k} min-max	D ₁	D_2	D ₆
ZCAV	ZCBV		Nm	Nm	1/min	mm	mm	mm	mm	mm
XC2606		69	1750	3500	6000	12 - 50	12 - 50	111	69	81,5
XC2608		85	2750	5500	4600	18 - 60	18 - 60	152	85	103,5
XC2610	XC3610	107	5500	11000	4200	28 - 75	28 - 75	178	107	127,5
XC2613	XC3613	133	8500	17000	4000	40 - 95	40 - 95	213	133	156
XC2615	XC3615	152	13500	27000	3850	50 - 110	50 - 110	240	152	181
XC2617	XC3617	179	22000	44000	3700	60 - 130	60 - 130	280	179	209
XC2620	XC3620	209	35000	70000	3200	70 - 155	70 - 155	318	209	245,5
XC2623	XC3623	234	43000	86000	2900	85 - 175	85 - 175	346	234	274
XC2625	XC3625	254	68000	136000	2600	95 - 190	95 - 190	389	254	307
XC2627	XC3627	279	82000	164000	2300	110 - 210	110 - 210	425	279	334,5
XC2630	XC3630	305	150000	300000	2100	120 - 230	120 - 230	457	305	366
XC2635	XC3635	355	195000	390000	1800	130 - 270	130 - 270	527	355	423

Bezeio	chnung	Größe	C ₁	E	E ₃	E ₄	L	S _D	ΔK _r	ΔK _w	J	V _{GR}	Gw _{sb}
ZCAV	ZCBV		mm	mm	mm	mm	mm	mm	mm	Grad	10 ⁻³ kgm²	dm³	kg
XC2606		69	43	7	1,5	1,5	93	30	0,42	2 x 0,5	4	\uparrow	4,1
XC2608		85	50	8	1,5	1,5	108	37	0,51	2 x 0,5	18		8,8
XC2610	XC3610	107	62	11	1,5	1,5	135	48	0,66	2 x 0,5	40		14,8
XC2613	XC3613	133	76	12	2,5	2,5	164	56	0,77	2 x 0,5	102	В	25,8
XC2615	XC3615	152	90	16,5	5,5	2,5	196	70	0,99	2 x 0,5	187	Schmieranweisung befolgen	37,9
XC2617	XC3617	179	105	15	3	3	225	79	1,15	2 x 0,5	407	nieranweis befolgen	60,2
XC2620	XC3620	209	120	18	6	3	258	92	1,33	2 x 0,5	801	iera oefo	89,9
XC2623	XC3623	234	135	23	9	4	293	103	1,5	2 x 0,5	1248	chm	117,9
XC2625	XC3625	254	150	34	20	4	334	120	1,75	2 x 0,5	2370	S	168,2
XC2627	XC3627	279	175	36	22	4	386	136	1,99	2 x 0,5	3638		221,8
XC2630	XC3630	305	190	38	24	4	418	148	2,16	2 x 0,5	4830		269,3
XC2635	XC3635	355	220	48	32	5	488	174	2,55	2 x 0,5	10022	\rightarrow	421,7

[■] Tragfähigkeit der Wellen-Naben-Verbindung überprüfen

Maß E muss im Betrieb konstant bleiben

Fortsetzung auf nächster Seite

Naben vorgebohrt, Bohrungsdurchmesser etwa 2 mm kleiner als kleinste Fertigbohrung

08.2019

Zahnkupplungen RINGFEDER® TNZ ZCAV / TNZ ZCBV

Erklärungen

 T_{KN} = Übertragbares Nenn-Drehmoment = Max. übertragbares Drehmoment T_{Kmax} der Kupplung = Max. Drehzahl

 $d_{1kmin};d_{2kmin} = Min.$ Bohrungsdurchmesser d_1/d_2 mit Passfedernut nach DIN 6885-1

 $\mathbf{d_{1kmax}}; \mathbf{d_{2kmax}} = \text{Max. Bohrungsdurchmesser d}_{1}/\text{d}_{2}$

mit Passfedernut nach DIN 6885-1

D₁ = Außendurchmesser

 D_2 = Außendurchmesser Nabe

 D_6 = Durchmesser

 C_1 = Geführte Länge in Nabenbohrung Spaltbreite zwischen linkem und rechtem

Bauteil

 E_3 = Spaltbreite

E₄ = Spaltbreite

L = Gesamtlänge

 S_D = Demontage Freiraum

 $\Delta \textbf{K}_{\textbf{r}}$ = Maximal zulässiger Versatz radial = Maximal zulässiger Versatz radial

= Trägheitsmoment ges.

= Fettmenge

Gw_{sb} = Gewicht bei kleinstem Bohrungsdurchmesser

Bestellbeispiel

Bezeichnung	Größe	d _{1k}	d _{2k}	Weitere Angaben
XC3630	305	140	220	*

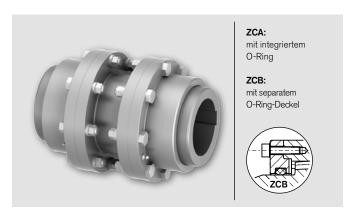
^{*)} Ohne weitere Angaben liefern wir als Standard: Nut nach DIN 6885-1, Nutbreitentoleranz P9, Bohrungstoleranz H7; optional mit Stellschraube

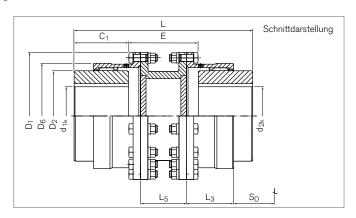
Weitere Informationen zu

RINGFEDER® TNZ ZCAV / TNZ ZCBV auf www.ringfeder.com

Haftungsausschluss

Alle technischen Daten und Hinweise sind unverbindlich. Rechtsansprüche können daraus nicht abgeleitet werden. Der Anwender ist grundsätzlich verpflichtet zu prüfen, ob die dargestellten Produkte seine Anforderungen erfüllen. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns jederzeit vor.




08.2019

Zahnkupplungen

RINGFEDER® TNZ ZCAZ / TNZ ZCBZ

Standardnaben und Zwischenstück

Bezeio	chnung	Größe	T _{KN}	T _{Kmax}	n _{max}	d _{1k} min-max	d _{2k} min-max	D ₁	D_2	D ₆	C ₁
ZCAZ	ZCBZ		Nm	Nm	1/min	mm	mm	mm	mm	mm	mm
XC4106		69	1750	3500	\uparrow	12 - 50	12 - 50	111	69	81,5	43
XC4108		85	2750	5500		18 - 60	18 - 60	152	85	103,5	50
XC4110	XC5110	107	5500	11000		28 - 75	28 - 75	178	107	127,5	62
XC4113	XC5113	133	8500	17000	<u>Φ</u>	40 - 95	40 - 95	213	133	156	76
XC4115	XC5115	152	13500	27000		50 - 110	50 - 110	240	152	181	90
XC4117	XC5117	179	22000	44000	nfraç	60 - 130	60 - 130	280	179	209	105
XC4120	XC5120	209	35000	44000	Auf Anfrage	70 - 155	70 - 155	318	209	245,5	120
XC4123	XC5123	234	43000	86000	¥	85 - 175	85 - 175	346	234	274	135
XC4125	XC5125	254	68000	136000		95 - 190	95 - 190	389	254	307	150
XC4127	XC5127	279	82000	164000		110 - 210	110 - 210	425	279	334,5	175
XC4130	XC5130	305	150000	300000		120 - 230	120 - 230	457	305	366	190
XC4135	XC5135	355	195000	390000	\downarrow	130 - 270	130 - 270	527	355	423	220

Bezeio	chnung	Größe	E _{min}	L _{min}	L ₃	L _{5min}	S _D	ΔK _r	ΔK _w	J	V _{GR}	Gw _{sb}
ZCAZ	ZCBZ		mm	mm	mm	mm	mm	mm	Grad	10 ⁻³ kgm ²	dm³	kg
XC4106		69	67	153	39	60	30	\wedge	2 x 0,5	\uparrow	2 x 0,035	\uparrow
XC4108		85	93	193	46	80	37		2 x 0,5		2 x 0,040	
XC4110	XC5110	107	115	239	59	90	48		2 x 0,5		2 x 0,065	
XC4113	XC5113	133	129	281	69	110	56		2 x 0,5		2 x 0,110	
XC4115	XC5115	152	153	333	83	110	70	Е	2 x 0,5	П	2 x 0,190	n E
XC4117	XC5117	179	178	388	93	130	79	Abhängig von	2 x 0,5	Abhängig von E	2 x 0,290	Abhängig von E
XC4120	XC5120	209	188	428	106	130	92	ängi	2 x 0,5	ängi	2 x 0,375	ängi
XC4123	XC5123	234	196	466	118	130	103	Abh	2 x 0,5	Abh	2 x 0,625	Abh
XC4125	XC5125	254	252	552	138	160	120		2 x 0,5		2 x 0,960	
XC4127	XC5127	279	258	608	154	160	136		2 x 0,5		2 x 1,335	
XC4130	XC5130	305	268	648	166	160	148		2 x 0,5		2 x 1,665	
XC4135	XC5135	355	294	734	193	160	174	↓	2 x 0,5	↓	2 x 2,500	\downarrow

Tragfähigkeit der Wellen-Naben-Verbindung überprüfen
Naben vorgebohrt, Bohrungsdurchmesser etwa 2 mm kleiner als kleinste Fertigbohrung

Fortsetzung auf nächster Seite

08.2019

Zahnkupplungen RINGFEDER® TNZ ZCAZ / TNZ ZCBZ

Erklärungen

 T_{KN} = Übertragbares Nenn-Drehmoment D_1 = Max. übertragbares Drehmoment T_{Kmax} D_2 der Kupplung D_6 = Max. Drehzahl C_1 $d_{1kmin};d_{2kmin} = Min.$ Bohrungsdurchmesser d_1/d_2

mit Passfedernut nach DIN 6885-1 $\mathbf{d_{1kmax}}; \mathbf{d_{2kmax}} = \text{Max. Bohrungsdurchmesser d}_{1}/\text{d}_{2}$

mit Passfedernut nach DIN 6885-1

= Außendurchmesser

= Außendurchmesser Nabe

= Durchmesser

= Geführte Länge in Nabenbohrung = Min. Spaltbreite zwischen linkem und E_{min}

rechtem Bauteil

= Mindestlänge

= Länge

L_{5min} = Mindestlänge Zwischenstück

 S_D = Demontage Freiraum

 $\Delta \textbf{K}_{\textbf{r}}$ = Maximal zulässiger Versatz radial = Maximal zulässiger Versatz radial

= Trägheitsmoment ges.

= Fettmenge

 $\mathbf{Gw_{sb}}$ = Gewicht bei kleinstem Bohrungsdurchmesser

Bestellbeispiel

Bezeichnung	Größe	d _{1k}	d _{2k}	Weitere Angaben
XC5117	179	120	120	*

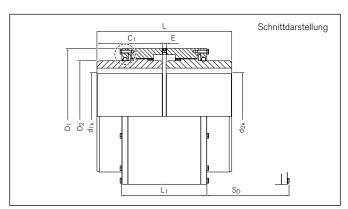
^{*)} Ohne weitere Angaben liefern wir als Standard: Nut nach DIN 6885-1, Nutbreitentoleranz P9, Bohrungstoleranz H7; optional mit Stellschraube

Weitere Informationen zu

RINGFEDER® TNZ ZCAZ / TNZ ZCBZ auf www.ringfeder.com

Haftungsausschluss

Alle technischen Daten und Hinweise sind unverbindlich. Rechtsansprüche können daraus nicht abgeleitet werden. Der Anwender ist grundsätzlich verpflichtet zu prüfen, ob die dargestellten Produkte seine Anforderungen erfüllen. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns jederzeit vor.


DE Tech Paper

08.2019

Zahnkupplungen RINGFEDER® TNZ ZCH

Standardnaben mit einteiligem Gehäuse

Bezeichnung	Größe	T _{KN}	T _{Kmax}	n _{max}	d _{1k} min-max	d _{2k} min-max	D ₁	D ₂
ZCH		Nm	Nm	1/min	mm	mm	mm	mm
XC0106	69	1750	3500	6000	12 - 50	12 - 50	98	69
XC0108	85	2750	5500	4600	18 - 60	18 - 60	115	85
XC0110	107	5500	11000	4200	28 - 75	28 - 75	145	107
XC0113	133	8500	17000	4000	40 - 95	40 - 95	176	133
XC0115	152	13500	27000	3850	50 - 110	50 - 110	196	152
XC0117	179	22000	44000	3700	60 - 130	60 - 130	225	179
XC0120	209	35000	70000	3200	70 - 155	70 - 155	256	209
XC0123	234	43000	86000	2900	85 - 175	85 - 175	286	234
XC0125	254	68000	136000	2600	95 - 190	95 - 190	310	254
XC0127	279	82000	164000	2300	110 - 210	110 - 210	345	279
XC0130	305	150000	300000	2100	120 - 230	120 - 230	375	305
XC0135	355	195000	390000	1800	130 - 270	130 - 270	430	355

Bezeichnung	Größe	C ₁	E	L	L ₁	S _D	ΔK _r	ΔK _w	J	V _{GR}	Gw _{sb}
ZCH		mm	mm	mm	mm	mm	mm	Grad	10 ⁻³ kgm ²	dm³	kg
XC0106	69	43	3	89	76	30	0,42	2 x 0,5	6	0,07	4,6
XC0108	85	50	3	103	83	37	0,51	2 x 0,5	11	0,08	7,0
XC0110	107	62	3	127	94	48	0,66	2 x 0,5	33	0,13	13,3
XC0113	133	76	5	157	123	56	0,77	2 x 0,5	93	0,22	24,5
XC0115	152	90	5	185	127	70	0,99	2 x 0,5	155	0,38	33,8
XC0117	179	105	6	216	144	79	1,15	2 x 0,5	327	0,58	50,5
XC0120	209	120	6	246	160	92	1,33	2 x 0,5	595	0,75	75,9
XC0123	234	135	8	278	178	103	1,50	2 x 0,5	1040	1,25	104,7
XC0125	254	150	8	308	194	120	1,75	2 x 0,5	1551	1,92	131,7
XC0127	279	175	8	358	220	136	1,99	2 x 0,5	2713	2,67	185,4
XC0130	305	190	8	388	234	148	2,16	2 x 0,5	4071	3,33	236,6
XC0135	355	220	10	450	264	174	2,16	2 x 0,5	8208	5,00	368,0

■ Tragfähigkeit der Wellen-Naben-Verbindung überprüfen

Naben vorgebohrt, Bohrungsdurchmesser etwa 2 mm kleiner als kleinste Fertigbohrung

Fortsetzung auf nächster Seite

08.2019

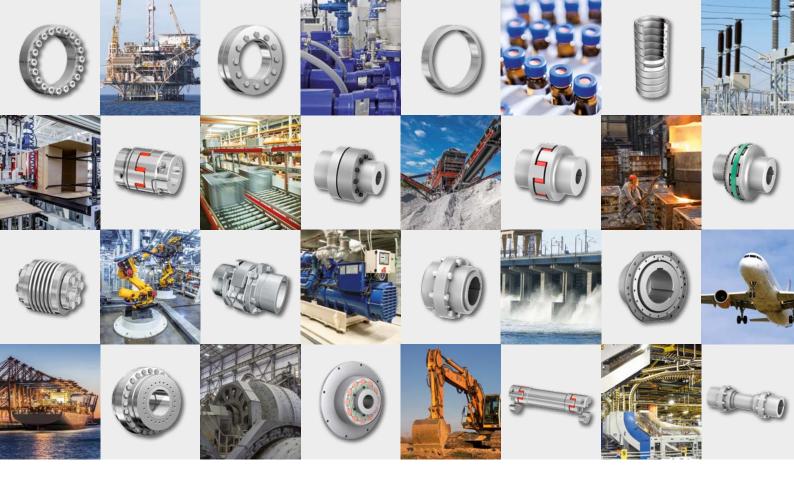
Zahnkupplungen RINGFEDER® TNZ ZCH

Erklärungen

T _{KN}	= Übertragbares Nenn-Drehmoment	D_1	= Außendurchmesser	S_D	= Demontage Freiraum
T _{Kmax}	= Max. übertragbares Drehmoment	D_2	= Außendurchmesser Nabe	ΔK_r	= Maximal zulässiger Versatz radial
	der Kupplung	C ₁	= Geführte Länge in Nabenbohrung	ΔK_w	= Maximal zulässiger Versatz radial
n _{max}	= Max. Drehzahl	E	= Spaltbreite zwischen linkem und rechtem	J	= Trägheitsmoment ges.
d _{1kmin} ;d _{2kmii}	$_{n}$ = Min. Bohrungsdurchmesser d_1/d_2		Bauteil	V_{GR}	= Fettmenge
	mit Passfedernut nach DIN 6885-1	L	= Gesamtlänge	Gwsh	= Gewicht bei kleinstem
d _{1kmax} ;d _{2kma}	ax = Max. Bohrungsdurchmesser d ₁ /d ₂ mit Passfedernut nach DIN 6885-1	L ₁	= Einbaulänge min. (ohne Schrauben)	32	Bohrungsdurchmesser

Bestellbeispiel

Bezeichnung	Größe	d _{1k}	d _{2k}	Weitere Angaben
XC0120	209	140	155	*


^{*)} Ohne weitere Angaben liefern wir als Standard: Nut nach DIN 6885-1, Nutbreitentoleranz P9, Bohrungstoleranz H7; optional mit Stellschraube

Weitere Informationen zu RINGFEDER® TNZ ZCH auf www.ringfeder.com

Haftungsausschluss

Alle technischen Daten und Hinweise sind unverbindlich. Rechtsansprüche können daraus nicht abgeleitet werden. Der Anwender ist grundsätzlich verpflichtet zu prüfen, ob die dargestellten Produkte seine Anforderungen erfüllen. Änderungen, die dem technischen Fortschritt dienen, behalten wir uns jederzeit vor.

RINGFEDER POWER TRANSMISSION GMBH

Werner-Heisenberg-Straße 18, D-64823 Groß-Umstadt, Germany · Phone: +49 (0) 6078 9385-0 · Fax: +49 (0) 6078 9385-100 E-mail: sales.international@ringfeder.com

RINGFEDER POWER TRANSMISSION TSCHAN GMBH

Zweibrücker Straße 104, D-66538 Neunkirchen, Germany · Phone: +49 (0) 6821 866-0 · Fax: +49 (0) 6821 866-4111 E-mail: sales.tschan@ringfeder.com

RINGFEDER POWER TRANSMISSION USA CORPORATION

165 Carver Avenue, Westwood, NJ 07675, USA \cdot Toll Free: +1 888 746-4333 \cdot Phone: +1 201 666 3320 \cdot Fax: +1 201 664 6053 E-mail: sales.usa@ringfeder.com

HENFEL INDÚSTRIA METALÚRGICA LTDA.

Av. Major Hilário Tavares Pinheiro, 3447 · CEP 14871 300 · Jaboticabal - SP - Brazil · Phone: +55 (16) 3209-3422 E-mail: vendas@henfel.com.br

RINGFEDER POWER TRANSMISSION INDIA PRIVATE LIMITED

Plot No. 4, Door No. 220, Mount - Poonamallee Road, Kattupakkam, Chennai – 600 056, India Phone: +91 (0) 44-2679 1411 · Fax: +91 (0) 44-2679 1422 · E-mail: sales.india@ringfeder.com

KUNSHAN RINGFEDER POWER TRANSMISSION COMPANY LIMITED

NO. 406 Jiande Road, Zhangpu 215321, Kunshan, Jiangsu Province, China Phone: +86 (0) 512-5745-3960 · Fax: +86 (0) 512-5745-3961 · E-mail: sales.china@ringfeder.com

