

Metric Precision Ball Screws

High load capacity in a range of package sizes, providing precise, smooth and quiet performance

Metric Precision Ball Screw Overview (10 - 12 mm)

The ideal solution for laboratory, medical and mechatronic applications, Thomson's miniature metric rolled ball screws deliver smooth and quiet operation and best-in-class load capacity.

Bigger Load Capacity

- Design maximizes load capacity by optimizing return system
- Quiet and smooth performance
- Enables flexible ball nut mounting configurations and rapid prototyping

Improved Value

- Screws are precision rolled to T7 accuracy class standard
- State-of-the-art manufacturing
- Higher load capacity equates to longer life

Genuine Thomson Quality and Innovation

- Proprietary thread form and processing equal quality and performance
- Expert technical and application support

Ball Nut Types	
Styles	Nominal Diameter Size Range (mm)
Flanged Single Nut Internal Return System (FSI)	10 - 50
Threaded Single Nut Internal Return System (TSI)	10 - 12
Cylindrical Single Nut Internal Return System (RSI)	10 - 12

Mate	rials					
Part	Mat	erial	Stre	ngth	Heat treatment	Standard Surface Finish
	16 - 50 mm	10 - 12 mm	R_{m}	R_{e}		
	(FSI)	(FSI, TSI, RSI)	[N/mm ²]	[N/mm ²]		
Screw	Cf53	SAE1045	≥ 610	≥ 380	60 ± 2 HRC Inductive hardening	Polished & Oiled
Nut	16MnCr5	SAE8620	> 800	> 600	60 ± 2 HRC hardened	Polished & Oiled (optional black oxide)
Wiper	NBR 33					
Ball	100Cr6	SAE52100			64 ± 2 HRC	

Special materials and heat or surface treatment on request.

Permitted temperature in continuous operation -22°F (-30°C) to 212°F (100°C). Please inquire for other applications.

Nuts with plastic ball returns only to 176°F (80°C); briefly 230°F (110°C).

Miniatu	niature Metric Styles Ball Screws – Product Availability												
Nominal Diameter				Screw Leads									
[mm]	2 mm	3 mm	5 mm	10 mm	20 mm	25 mm	40 mm						
10	•	•		•									
12	•												
Standar	d Metric Ball	Screws - Pro	oduct Availab	ility									
16			•	•									
20													
20			•										
25			•	•	•	•							
			•	•	•	•							
25			•		•	•	•						

Standard Flanged Style (16 - 50 mm)

Flanged style metric ball screw assemblies combine the engineering and performance of high-quality, German ball screws with North American manufacturing and logistics. Only 2% of all ball screws sold in North America are manufactured here, so you'll be able to take advantage of shorter lead times, reduced shipping costs, and enhanced communication with support and service. The flanged style provides the best in quality, performance and delivery at a competitive price.

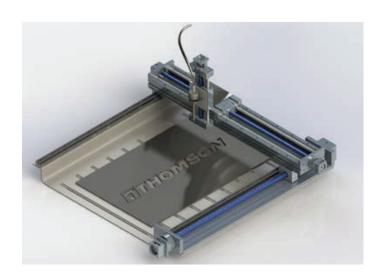
- DIN 69051 compliant (flanged style 16 50 mm only)
- Patented Precision Screw Forming (PST) technology
- Smooth performance due to unique ball return systems
- Regionally stocked/machined/assembled product in Marengo, Illinios
- P5 accuracy screws standard
- Ground quality ball nuts

Flanged Style Application Examples

Thomson's ball screw assemblies provide the smooth motion and positional accuracy typically found only in a ground product. These qualities, combined with the economical precision rolled solution, make them ideal for large 3-axis structures.

Gantry

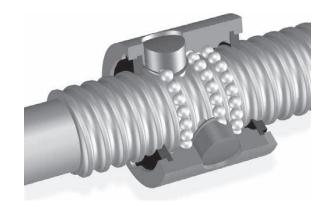
Thomson's unique ball return systems and preload capabilities reduce the effect of critical screw speed on a long slender axis (see X-axis above). Combined with the Thomson profile rail, this solution provides stiffness and accuracy to the overall system.


Smooth motion is necessary to prevent reflected inertia from causing structural vibration in large structures. The illustrated Y-axis below combines a precision flanged ball screw assembly with the alignment compensation of Thomson linear rails.

Engraver / Laser / Waterjet Cutting

Machine tool applications have primarily been the domain of ground ball screw assemblies. The introduction of high-precision P3/P5 accuracy rolled ball screws has eliminated the need for ground product where a less expensive solution that still meets high performance standards is required.

These types of applications typically require P3/P5 accuracy, 75-100% duty cycle, harsh environments, and reversing loads or dithering issues. Flanged ball screw assemblies have molded rubber (NBR) seals as standard in sizes ø16 mm and above and are ideal for these demanding parameters.



Metric Ball Nut Return System Overview

All ball screws require a recirculation system for the ball bearings. Thomson return systems are optimized for each diameter and lead combination to maximize load capacity, minimize footprint and guarantee smooth operation.

Single Return (E = Single Liner, M = Multi Liner) For single-start ball screws

After each turn, the balls are lifted from the shaft raceway and set back by a single turn. Thomson NEFF return systems made from glass-fiber reinforced plastic or steel guarantee a faultless and gentle recirculation of the balls.

Internal Return (K = Channel)

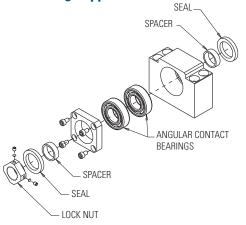
For single-start and multiple-start ball screws.

After several turns, the balls are returned either by a patented plastic recirculation system integrated into the nut or through recirculation channels also integrated into the nut using steel recirculation inserts.

External Return (D = End Cap)

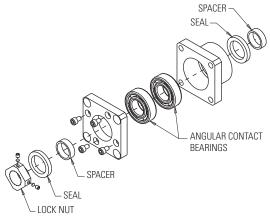
For multiple-start ball screws.

The balls are recirculated via two special end caps and return channels integrated into the nut.



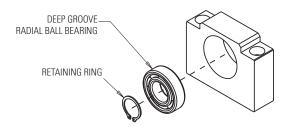
Bearing Supports Product Overview

Metric Ba	all Screws					
Diameter	BK	BF	FK	FF	MK	WK
12	7833391	7833398	7833405	7833411	7833700	-
16	7833392	7833399	7833406	7833412	7833701	-
20	7833393	7833400	7833407	7833413	7833702	-
25	7833394	7833401	7833408	7833414	7833703	7833614
32	7833395	7833402	7833409	7833415	-	7833615
40	7833396	7833403	7833410	7833416	-	7833617
50	7833397	7833404	-	-	-	7833621

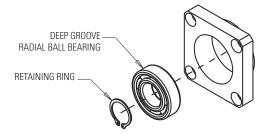


BK Bearing Support (1), (2)

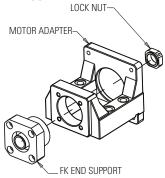
The base mounted BK Bearing Support contains an angular contact bearing pair for increased stiffness and axial load capacity. Design dimensions fit standard Type BK or BK1 end machining.


FK Bearing Support (1), (2)

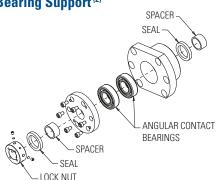
The flange-mounted FK Bearing Support contains an angular contact bearing pair for increased stiffness and axial load capacity. Design dimensions fit standard Type FK or FK1 end machining.



BF Bearing Support (1), (3)


Base-mounted BF Bearing Support contains a floating radial bearing to allow axial shaft movement. Design dimensions fit standard Type BF or BF1 end machining.

FF Bearing Support (1), (3)


The flange-mounted FF Bearing Support contains a floating radial bearing to allow axial shaft movement. Design dimensions fit standard Type FF or FF1 end machining.

MK Bearing Support (2)

Base-mounted NEMA 23 or 34 motor mount. Design dimensions fit standard Type FK end machining.

WK Bearing Support (2)

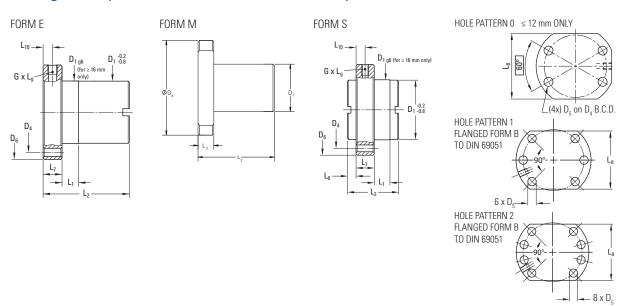
Heavy duty, flange-mounted WK support contains higher load capacity bearings. Design dimensions fit standard WK or WK1 end machining.

- (1) BK, FK, MK and WK supports are classified as "fixed," and BF and FF supports are classified as "simple" for purposes of critical speed and column strength calculations.
- (2) Locknut included in assembly
- (3) Retaining ring included in assembly

Flanged Style Ball Nuts — Technical Specifications

Note: Some sizes only available with round flange; check L8 dimension for flange style.

Internal Return Flanged Ball Nut and Screw


- Flexible solution for standard mounting
- Integral wiper (≥ 16 mm) and flange included as standard
- Available in three preload classes (Type Z1, Z2, Z3)
 - Z1 light preload to 1-2% (16 50 mm only)
 - Z2 no preload, clearance held to max indicated in table (standard unless specified)
 - Z3 no preload, clearance held to max 0.05 mm (16 50 mm only)

Nom.	Lead	Nut	Return	Ball Nut	Ball		Pe	rformano	e Data			Screw	Specificat	ions		
Dia- meter	Loud	Form	System	P/N	Screw P/N	,	nic Load pacity		Load acity	Max Axial Backlash	Major Diameter	Minor Diameter	Std Length	Max Length	Screw Weight	
[mm]	[mm]					[kN]	[lbs]	[kN]	[lbs]	[mm]	[mm]	[mm]	[mm]	[mm]	[kg/m]	
10	2	М	М	8103-448-039	190-9680	2.0	440	3.4	769	0.05	9.8	8.3	1800	1800	0.59	
10	3	М	М	8103-448-040	190-9681	4.8	1076	8.6	1941	0.05	9.7	8.0	1800	1800	0.58	
10	10	М	K	8103-448-042	190-9689	2.9	659	5.2	1176	0.05	9.7	7.9	1900	1800	0.58	
12	2	М	М	8105-448-043	190-9690	6.8	1550	13.1	2945	0.05	11.8	10.3	1800	1800	0.86	
16	5	Е	Е	7106-448-061	195-9698	9.3	2091	13.1	2945	0.08	15.3	12.9	4000	6000	1.30	
16	10	Е	K	7106-448-062	195-9699	15.4	3462	26.5	5958	0.08	15.2	13.0	4000	6000	1.30	
20	5	Е	K	7107-448-063	195-9700	10.5	2361	16.6	3732	0.08	19.3	16.9	4000	6000	2.00	
25	5	Е	Е	7110-448-064	195-9701	12.3	2765	22.5	5058	0.08	24.3	21.9	4000	6000	3.30	
25	10	Е	K	7110-448-065	195-9702	13.2	2968	25.3	5688	0.08	24.3	21.9	4000	6000	3.30	
25	20	S	D	7110-448-066	195-9703	13.0	2923	23.3	5238	0.15	24.4	22.0	4000	6000	3.30	
25	25	S	D	7110-448-067	195-9704	16.7	3754	32.2	7239	0.08	24.3	22.0	4000	6000	3.30	
32	5	Е	Е	7112-448-069	195-9706	21.5	4834	49.3	11084	0.08	31.3	28.9	4000	6000	5.60	
32	10	Е	Е	7112-448-070	195-9707	33.4	7509	54.5	12253	0.08	32.5	27.3	4000	6000	5.60	
32	20	Е	K	7112-448-071	195-9708	29.7	6677	59.8	13444	0.08	31.5	27.9	4000	6000	5.60	
40	5	Е	Е	7115-448-073	195-9710	23.8	5351	63.1	14186	0.08	39.3	36.9	4000	6000	9.00	
40	10	Е	Е	7115-448-074	195-9711	38.0	8543	69.1	15535	0.08	39.3	34.1	4000	6000	8.40	
40	20	Е	K	7115-448-075	195-9712	33.3	7487	76.1	17109	0.08	39.5	35.9	4000	6000	9.00	
40	40	S	D	7115-448-076	195-9713	35.0	7869	101.9	22909	0.08	38.7	36.3	4000	6000	9.00	
50	10	Е	Е	7120-448-077	195-9714	68.7	15445	155.8	35027	0.08	49.3	44.1	4000	6000	13.50	

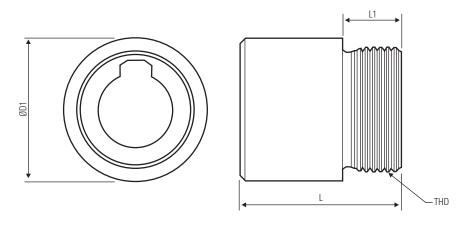
(1) P3 accuracy class is \pm 12 μm / 300 mm for nut sizes 16 mm and greater and is available upon request.

Flanged Style Ball Nuts — Technical Specifications

Technical Specifications															
Nom.	Lead							Nι	ut Specific	ations					
Dia- meter		Hole Pattern	D1 g6 ^[2]	D4	D5	D6	L1	L2	L6	L7	L8	L10	Lube Hole	No.of Circuits	Ball Diameter
[mm]	[mm]		[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	(G)	Circuits	[mm]
10	2	0	18	28	4.5	36	-	22	-	6	22	-	-	5	1.588
10	3	0	18	28	4.5	36	-	29	-	6	22	-	-	7	1.984
10	10	0	23	30.5	4.5	38	-	35	-	6	24	-	-	2 x 1.8	1.984
12	2	0	20	29	4.5	37	-	40	-	8	24	-	-	9	1.588
16	5	1	28	38	6	48	10	42	-	10	40	5	M6x1	3	3.500
16	10	1	28	38	6	48	10	55	-	10	40	5	M6x1	6	3.000
20	5	1	36	47	7	58	10	42	-	10	44	5	M6x1	3	3.500
25	5	1	40	51	7	62	10	42	-	10	48	5	M6x1	3	3.500
25	10	1	40	51	7	62	16	55	-	10	48	5	M6x1	3	3.500
25	20	1	40	51	7	62	4	35	10.5	10	48	5	M6x1	4	3.500
25	25	1	40	51	7	62	9	35	8	10	N/A ^[4]	5	M6x1	5	3.500
32	5	1	50	65	9	80	10	55	-	12	62	6	M6x1	5	3.500
32	10	1	53[3]	65	9	80	16	69	-	12	62	6	M8x1	3	7.140
32	20	1	53[3]	65	9	80	16	80	-	12	62	6	M6x1	4	5.000
40	5	2	63	78	9	93	10	57	-	14	70	7	M6x1	5	3.500
40	10	2	63	78	9	93	16	71	-	14	70	7	M8x1	3	7.140
40	20	2	63	78	9	93	16	80	-	14	70	7	M8x1	4	5.000
40	40	2	63	78	9	93	16	85	7.5	14	N/A ^[4]	7	M8x1	8	3.500
50	10	2	75	93	11	110	16	95	-	16	85	8	M8x1	5	7.140

⁽²⁾ For ≥ 16 mm nominal diameter. (3) Dimension does not comply with DIN 69051. (4) Round flange.

Threaded Style Ball Nuts — Technical Specifications


Internal Return Threaded Ball Nut and Screw

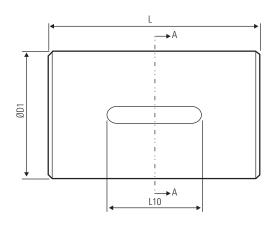
- Cost-effective solution in a small envelope, ideal for use in small spaces
- Flexible solution for non-standard mounting
- Available in standard preload classes (Type Z2)
 - Z2 no preload, clearance held to max indicated in table

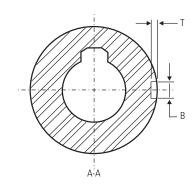
Technica	Technical Specifications												
Nom.	Lead	Return	Ball Nut	Ball Screw			Performance Data	a					
Diameter		System	P/N	P/N	Dynamic Lo	ad Capacity	Static Loa	d Capacity	Max. Axial Backlash				
[mm]	[mm]				[kN]	[lbs]	[kN]	[lbs]	[mm]				
10	2	M	8103-448-022	190-9680	2.0	440	3.4	769	0.05				
10	3	M	8103-448-023	190-9681	4.8	1076	8.6	1941	0.05				
10	10	K	8103-448-030	190-9689	2.9	659	5.2	1176	0.05				
12	2	М	8105-448-031	190-9690	6.8	1550	13.1	2945	0.05				

Threaded Style Ball Nuts — Technical Specifications

Nom.	Lead		Screw Spe	ecifications				Nut Spec	ifications		
Diameter		Major Diameter	Minor Diameter	Std Length	Screw Weight	L	D1 0/1	THD	L1	No. of Circuits	Ball Diameter
[mm]	[mm]	[mm]	[mm]	[mm]	[kg/m]	[mm]	[mm]		[mm]		[mm]
10	2	9.8	8.3	1800	0.59	22	19.5	M17 x 1	8	5	1.588
10	3	9.7	8.0	1800	0.58	29	21	M18 x 1	9	7	1.984
10	10	9.7	7.9	1800	0.58	35	23	M18 x 1	9	2x1.8	1.984
12	2	11.8	10.3	1800	0.86	40	24	M20 x 1	10	9	1.588

Cylindrical Style Ball Nuts — Technical Specifications


Internal Return Cylindrical Ball Nut and Screw


- Cost-effective solution in a small envelope, ideal for use in small spaces
- Flexible solution for non-standard mounting
- Available in standard preload classes (Type Z2)
 - Z2 no preload, clearance held to max indicated in table

Technical Specifications												
Nom.	Lead	Return	Ball Nut	Ball Screw			Performance Data					
Diameter		System	P/N	P/N	Dynamic Lo	ad Capacity	Static Loa	d Capacity	Max. Axial Backlash			
[mm]	[mm]				[kN]	[lbs]	[kN]	[lbs]	[mm]			
10	2	M	8103-448-052	190-9680	2.0	440	3.4	769	0.05			
10	3	M	8103-448-053	190-9681	4.8	1076	8.6	1941	0.05			
10	10	K	8103-448-055	190-9689	2.9	659	5.2	1176	0.05			
12	2	М	8105-448-056	190-9690	6.8	1550	13.1	2945	0.05			

Cylindrical Style Ball Nuts — Technical Specifications

Nom.	Lead		Screw Spe	ecifications				Nut Spec	cifications		
Diameter		Major Diameter	Minor Diameter	Std Length	Screw Weight	L	D1 g6	BxT N9	L10	No. of Circuits	Ball Diameter
[mm]	[mm]	[mm]	[mm]	[mm]	[kg/m]	[mm]	[mm]		[mm]		[mm]
10	2	9.8	8.3	1800	0.59	22	19.5	3 x 1.8	13	5	1.588
10	3	9.7	8.0	1800	0.58	29	21	3 x 1.8	13	7	1.984
10	10	9.7	7.9	1800	0.58	35	23	3 x 1.8	13	2x1.8	1.984
12	2	11.8	10.3	1800	0.86	40	24	3 x 1.8	18	9	1.588

How to Order Metric Precision Rolled Ball Screws

This ordering key provides a quick overview of available precision rolled metric ball screws. To explore additional technical resources and options, contact Thomson customer support.

1	2	3	4	5	6	7	8	9	10	11	12	13
RM	25	10	FD	Z2-	271.5	L	W-	BK	S	K	X	
1. Nut Config RM = Metric 2. Nominal that the second of	hread diamete	R = C FD = F FN = F FN = F MD = F MG = T 5. Nut : Z1 = Li Z2 = S: Z3 = B: 6. Thre xxx.x = F Nut : L = Nut X = Nut X = Nut	hreaded internitylindrical internitylindrical internal langed (DIN 69 langed, polymelanged (DIN 69 hreaded, metal assembly conght preload (1-tandard backla: acklash reduce aded length Lenght (mm) torientation faces right endicaships on arbor	nal ball return (FG ball return (FG 051), metal bal er ball return 051), polymer la ball return dition 2%) sh d (0.05 mm ma	(SI)	BK = Base mou BK1 = Base mou BK1 = Floating b BK1 = Floating b BK1 = Floating b BK1 = Floating b BK1 = Floating f BK1 = Floating f BK1 = Base mou BK1 = Base mou BK1 = Base mou BK1 = Base mou BK1 = Floating f BK1 = Floating b BK2 = BASE mou BK3 = BASE mou BK4 = B	gth to print with drive to print with drive to the with drive ase mount with wase mount with unt with drive unt without drive ange mount with ange mount with drive int without drive ase mount with the with drive int without drive to the without drive the without d	e de drive nout drive ve th drive thout drive e drive drive thout drive thive drive drive drive fout drive fout drive fout drive fout drive guration	X = 0 K = 1 BK = E BK1 = E BK1 = E BK1 = F FK = F FK1 = F GK = I QK1 = I QK1 = I QK1 = I QK1 = I WK = I LR Rig X = No S = Sup 13. Cu blank = I	Floating base no Flange mount ware lange mount ware loating flange is loating flange. Base mount with Base mount with a base mount ware loating base no Floating base no Heavy duty flar Heavy duty flar Motor mount was the support (mach support (mach ware).	th drive th drive th drive thout drive thout drive thout drive thout drive thout drive with drive thout drive thou	e e drive

Code Example: RM2510FDZ2-271.5LW-BKSKX

This describes a standard lashed Ø25 x 10 mm FSI ball screw assembly that is 271.5 mm in threaded length with a BK bearing support on the left side with drive extension, BK end bearing support without drive on the right side. The flange faces the left side (the side with the drive extension).

NOTE: Not all bearing supports are available in all sizes. See catalog or contact customer support for available combinations.

Express Prototypes, Less Lead Time

Prices and lead times are generally higher with other products as 98% of rolled metric ball screws are manufactured outside of North America.

Thomson provides expert application support and the ability to rapidly prototype designs by combining North American manufacturing of metric products with the engineering support of a trusted brand.

Don't pay extra to wait.

Order your Thomson prototype with delivery from our North American facility in Marengo:

	Standard Lead Time	Express Lead Time (Qualified Prototypes)
Components	2 - 3 days	1 day
Machined Assemblies	2 - 4 weeks	1 - 2 weeks

Customized Products and Machining to Fit Your Applications

Standard (16 - 50 mm) Metric Ball Screws

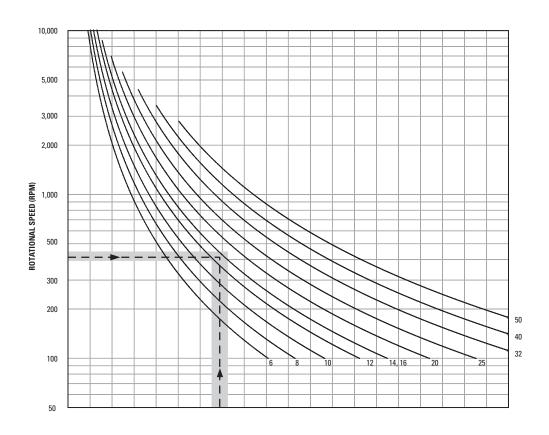
- Custom coatings available (thin dense chrome)
- \pm 12 μ m/300 mm lead accuracy (P3)
- Reduced backlash (0.05 mm)

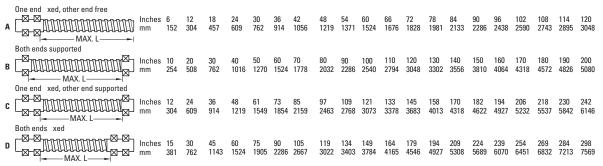
Miniature Metric Ball Screws

• Custom coatings available (thin dense chrome)

Standard and custom machining

Precision end journal machining to standard or customer specified requirements using CNC lathe and grinding.


State-of-the-art dynamic lead error verification to P5 accuracy.



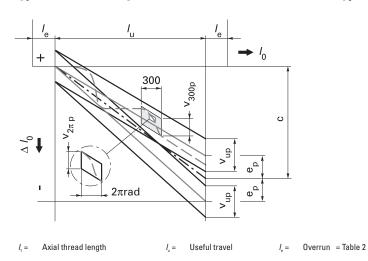
Ball Screw Engineering

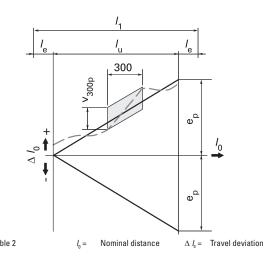
Acceptable Speed vs. Length for Screws

END SUPPORT TYPE

Ball Screw Engineering

Compression Load vs. Length for Designated Ball Screws





Screw Accuracy — Permissible Travel Variation

Type P – Positioning Ball Screws

Type T – Transport Ball Screws

Lead Accuracy								
		P3	P5	T7				
V _{300 p}	Permissible travel variance over 300 mm	Table 1	Table 1	Table 1				
$V_{2\pi_{\mathfrak{p}}}$	Permissible travel variance over 2 π travel	Table 1	Table 1	-				
С	Travel compensation	-0.01/1000	0	0				
ер	Limit deviations for useful distance $I_{\rm u}$	Table 3	Table 3	$\pm \frac{I_u}{300} \cdot V_{300p}$				
V	Permissible travel variance over useful travel /	Table 3	Table 3	-				

≤ 10 ≤ 20	>20											
40 60	100											
Table 3												
8000 100	00 12500											
10000 125	00 16000											
76 94	115											
50 6	1 76											
140 17	5 220											
92 11	3 140											
199 24	0 290											
124 15	2 189											
270 33	0 410											
174 21	3 265											
	9 8000 1000 125 76 94 50 6° 140 17 92 11 199 24 124 15 270 33											

Glossary and Formulas

Accuracy

A measurement of precision. Perfect accuracy, for example, means advancing a ball nut 25 mm from any point on a screw will always require the exact same number of revolutions.

Axial Lash / Backlash

The axial-free motion between the ball nut and ball screw; a measure of system stiffness and repeatability.

Column Load / Compression Load

Load that would tend to compress or buckle the ball screw shaft.

Dynamic Load Rating

Maximum load that a ball bearing screw assembly can maintain for 1 million revolutions (Metric Series).

Lead

The axial distance a screw travels during one revolution.

Lead Error

The amount of positional error per 300 mm (Metric Series) that is inherent in linear motion on ball screws.

Load/Life Rating

The usable life of a ball bearing screw assembly measured in revolutions under a specific load. The revolutions that 90% of a group of ball bearing screws will complete, or exceed, before the first evidence of fatique develops.

Repeatablity

A measure of constancy that is directly related to axial backlash. Higher backlash equates to lower repeatability and may be corrected by preloading the ball nut if required.

Static Load

Static load is the maximum non-operating load capacity above which brinelling of the ball track occurs.

Formulas											
Equivalent Load $F_{eq}[N] = \left(\sum_{i=1}^{n} F_i^3 \times \frac{n_i}{n_{eq}} \times \frac{q_i}{100} \right)^{1/3}$		Power		P _d [W]	$P_d[W] = \frac{F_{eq} \times P \times n}{5.398 \times 10^4}$						
Equivalent Speed $n_{eq}[rpm] = \sum_{i=1}^{n} n_i \times \frac{q_i}{100}$		Critical Scre	rew Speed n _s [rpi		$m] = S \times C_{S_1} \times 1.2 \times 10^8 \times \frac{d_r}{L^2}$						
Life	$L_{10} [Rot] = \left(-\frac{C_{am}}{F_{eq}} \right)^3 x \ 10^6$	Critical Nut Speed DN =		d _o n < 140,000							
Torque	T [Nm] = 1.77 x 10 ⁻⁴ x F _{eq} x P	Permissible $F_s[N] = S \times C_{S_z} \times \frac{9.687}{L^2} \times 10^4 \times \frac{d_r^4}{L^2}$		$\frac{7}{L^2}$ x 10 ⁴ x $\frac{d_r^4}{L^2}$							
q = Duration [%] C _{am} = Dynamic Load [N]			End Support		C _s ,	C_{S_2}					
P = Lead [mm]	А	C8-8/111	MAX. L	0.36	0.25						
C _s = End Fixity Factor (see table on the right) S = Safety Factor (0.8 recommended)			C [®] ZUUUU	MAX. L ——I	1.00	1.00					
d _o = Nominal Diameter [mm]			C ^{S-S} 1111	MAX. L ——I	1.47	2.00					
d _r = Root Diameter [mm] L = Max. Unsupported Length [mm]			[8-8] 		2.23	4.00					
n = Rotational Speed of Screw [RPM]											

USA, CANADA and MEXICO

Thomson Customer Support 203A West Rock Road Radford, VA 24141, USA Phone: 1-540-633-3549 Fax: 1-540-633-0294

E-mail: thomson@thomsonlinear.com Literature: literature.thomsonlinear.com

www.thomsonlinear.com

Metric_Precision_Rolled_Ball_Screws_BREN-0021-06 | 20200221 SK Errors and technical alterations reserved. It is the responsibility of the product user to determine the suitability of this product for a specific application. All trademarks property of their respective owners. ©2020 Thomson Industries, Inc.

