Sumitomo Drive Technologies

Bevel BUDDYBOX® Drive H Series

Introduction to the Premium Efficiency (IE3) Motor

Sumitomo Heavy Industries, Ltd.

No.C2050E-1

Table of Contents

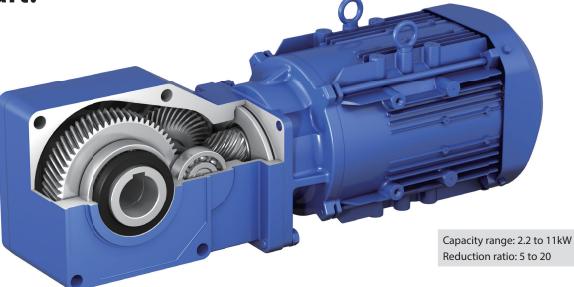
Contents

A Overview

Contents	A1
Features	A2
Precautions for the premium-efficiency motor	A3

B	Selection and Dimension	Diagrams
<u> </u>	······································	D 2

Gearmotor standard specifications	BZ
Nomenclature	B4
Selection procedure	B6
Selection example	B8
Load coefficient	B9
Selection table	B12
Dimension diagrams	B16


C Technical Data	
Construction	C2
How to see nameplates	C3
Lubrication	C4
Inertia moment GD2	C5
Direction of output shaft rotation	C9
Output shaft bore diameter	C9
Handling the output shaft (hollow shaft)	C10
Motor characteristics table	C18
Terminal box specifications	C20
Motor fan cover	C26
Motor brake	C27
Wiring	C33
Protection type and cooling type	C42
Paint and rust prevention	C43

Introducing a compact right-angle-shaft gearmotor with low reduction rate and hollow shaft.

Features

- Bevel gear + helical gear high-efficiency reduction ratio mechanism
 Realizes high efficiency thanks to a reduction mechanism optimized for low-reduction ratios.
- Compact case for hollow shafts With a case made especially for hollow shafts, it is more compact than standard gearmotors.
- 3600r/min motor speed makes high-speed operation possible
- Can be operated at high speed (120Hz).
- Can be lubricated with long-life grease

Saves time and effort compared with oil lubrication.

Related products

- Bevel Buddybox[®] Drive 4 Series

Has a high allowable radial load thanks to features such as its FCD gear case. Solid shaft and foot mount also available Catalog No. C2020]

Capacity range: 0.1 to 55kW Reduction ratio: 11 to 10658

- Bevel Buddybox[®] Drive 5 Series

High capacity range, right angle shaft gear motor specially designed for hollow shafts

P [Catalog No. C2030]

Capacity range: 0.1 to 37kW Reduction ratio: 11 to 4365

- Helical Buddybox® Drive

Parallel shaft gearmotor that combines CYCLO® Drive and a helical gear with hollow shafts

Capacity range: 0.1 to 30kW Reduction ratio: 11 to 4365

A2

Precautions for the premium-efficiency motor

Commercial power source

The features of the premium-efficiency motor (top-runner motor) are different from a conventional standard efficiency motor. Especially, at the time of replacement from the existing product, it is necessary to review the power and peripheral equipment.

Motor characteristics	Standard-efficiency motor			ſ	Premium-efficie	ncy motor			
[Example]	Motor speed:	1700r/min	Starting torque:	204%		Motor speed:	1740r/min	Starting torque:	297%
Motor capacity 2.2kW Power source voltage 200V 60Hz	Rated current: Starting current value:	8.90A 46.9A	Stall torque:	229%		Rated current: Starting current value	9.32A 74.9A	Stall torque:	402%

The premium-efficiency motor:

- reduces the occurrence loss so its speed is faster than that of the former standard-efficiency motor.
- For purposes for which the operation speed cannot be raised, it is necessary to reconsider the reduction ratio associated with an increase in the motor speed.
- If the load torque becomes equivalent or larger than that of the standard-efficiency motor due to an increase in the speed, the motor output will also increase.
- Depending on the load conditions, the power consumption may increase more than that of the standard-efficiency motor.
- To reduce copper loss, the winding resistance of the motor is lowered and the starting current, starting torque, and stall torque (maximum torque) is higher than those of the standard-efficiency motor.
- In some cases, it may be necessary to change peripheral equipment such as the breaker.

Starting and stopping frequency and load coefficient of the drive

andard-efficiency motor

Starting and stopping	Less th	an 10 hour	rs a day	Less th	an 24 hour	s a day
frequency (times/hour)						
10 or less	1.00	1.15	1.50	1.20	1.30	1.65
200 or less	1.10	1.35	1.65	1.30	1.50	1.85
500 or less	1.15	1.50	1.80	1.40	1.65	2.00

Premium-efficiency motor							
Starting and stopping	Less than 10 hours a day			Less th	Less than 24 hours a day		
(times/hour)			III			III	
1 or less	1.00	1.15	1.50	1.20	1.30	1.65	
3 or less	1.00	1.25	1.60	1.20	1.40	1.70	
10 or less	1.00	1.35	1.70	1.20	1.50	1.80	
60 or less	1.00	1.45	1.75	1.25	1.65	2.00	

- Since the starting torque and stall torque (maximum torque) of the premium-efficiency motor are large, the selection procedure, start and stall frequencies, and drive load coefficient are different from those of a standard-efficiency motor. (For details see B10)

Inverter drive

Though it can be used in the same way as a standard-efficiency motor, the parameters (rated current, etc.) of the inverter are different.

If the existing product is replaced with a premium-efficiency motor and the existing inverter continues to be used, the parameters of the inverter must be changed.

Electronic thermal relay setting

- Since the rated current is higher than that of the standard-efficiency motor, it is necessary to change the setpoint of the electronic thermal relay.

During V/F control and fixed torque boost operation

- With the setpoint torque boost for the standard-efficiency motor, the current flow may be excessive during slow speed operation. If the current flow is too much, reduce the setpoint value.

During sensorless control operation

- After replacing the gearmotor, perform auto-tuning.

Motor brakes

n lol Motor conscient 2 21/M

The characteristics of the brake of the premium-efficiency motor differ from those of the conventional standard-efficiency motor and AF motor for inverter. For example, the operation delay time at the time of braking, and the standard brake torque are different.

The braking stop position may be misaligned, particularly in the case of replacement of the existing product. It may be necessary to review the braking circuit and the control signal timing of braking in the inverter-drive.

Example] Motor capacity 2.2kW							
		Standard-eff	iciency motor	Premium-efficiency motor			
Brake characteristics		3-phase motor	AF Motor for Inverter	Premium-Efficiency, 3-phase motor	Premium-efficiency, 3-phase motor for inverter		
Bra	ke type	FB-3D	FB-5B	FB-3E			
Brake to	orque (N · m)	22	37	22			
at the time	Normal braking circuit (Simultaneous turn-off circuit)	0.3 - 0.4	-	0.75 - 0.95	-		
of braking (sec)	Normal braking circuitfor inverter (Separate turn-off circuit)	0.15 - 0.2	0.2 - 0.25	0.4 -	0.5		
	Quick-braking circuit	0.01 - 0.02	0.01 - 0.02	0.02 -	0.04		

BIBUS s.r.o. +420 547 125 300 www.bibus.cz

А3

B Selection and Dimension Diagrams

	Page
Gearmotor standard specifications	B2
Nomenclature	B4
Selection procedure	B6
Selection example	B8
Load coefficient	B9
Selection table	B12
Dimension diagrams	B16

Motor

	Items	Specifications					
	Motor specifications		Standard Specification	Built-in brake standard specifications			
	Capacity range	2.2 to 11kW 4	1P	2.2 to 11kW 4P FB Brake			
Pr	Protection type	· · · ·	IP44 Totally enclosed splash proof type, indoor) or (IP44 Totally enclosed splash proof type, outdoor)	Indoor type (IP44 Totally enclosed splash proof type, indoor) or outdoor type (IP44 Totally enclosed splash proof type, outdoor)			
em	Enclosure	Totally enclose	sed fan cooled type	Totally enclos	ed fan cooled type		
ium	Power source	200V 50/60H	z, 220V 60Hz, or 400V 50/60Hz, 440V 60Hz	200V 50/60Hz	z, 220V 60Hz, or 400V 50/60Hz, 440V 60Hz		
eff	Thermal class	155 (F)		Motor: 155 (F)/FB brake: F		
icie	Time rating	S1 (continuo	us)	S1 (continuou	IS)		
Premium-efficiency, 3-phase motor	Terminal box position and lead wire direction	See C25.		See C25.			
mo	Number of lead	3	2.2 to 3.7kW (direct on-line starting)	5	2.2 to 3.7kW (direct on-line starting)		
tor	wires	6	5.5 to 11kW(人-Δ startable)	8	5.5 to 11kW(人-Δ startable)		
	Standard	,	efficiency value is compliant with JIS C 4034-30 and premium efficiency (IE3)	JIS C 4034-1, efficiency value is compliant with JIS C 4034-30 and IEC60034-30 premium efficiency (IE3)			
	Capacity range	2.2 to 11kW 4	ŧP	2.2 to 11kW 4P FB Brake			
Pr	Protection type		IP44 Totally enclosed splash proof type, indoor) or (IP44 Totally enclosed splash proof type, outdoor)	Indoor type (IP44 Totally enclosed splash proof type, indoor) or outdoor type (IP44 Totally enclosed splash proof type, outdoor)			
emi	Enclosure	Totally enclose	sed fan cooled type	Totally enclosed fan cooled type			
um	Power source	200V 60Hz, 2	20V 60Hz or 400V 60Hz, 440V 60Hz	200V 60Hz, 220V 60Hz or 400V 60Hz, 440V 60Hz			
eff F	Thermal class	155 (F)		Motor: 155 (F)/ Brake: F			
or ir iciei	Time rating	S1 (continuo	us)/6 to 60Hz constant torque characteristics	S1 (continuous)/6 to 60Hz constant torque characteristics			
For inverters Premium-efficiency, 3-phase motor	Terminal box position and lead wire direction	See C25.		See C25.			
not	Number of lead	3	2.2 to 3.7kW	5	2.2 to 3.7kW		
or	wires	6	5.5 to 11kW(人-Δ startable)	8	5.5 to 11kW(人-Δ startable)		
	Standard		efficiency value is compliant with JIS C 4034-30 and premium efficiency (IE3)		efficiency value is compliant with JIS C 4034-30 and premium efficiency (IE3)		

Note) Efficiency value conforms to Top Runner standard.

B2

Drive part

Items	Specifications		
Lubrication Method	Long life grease lubrication		
Reduction method	Combination of a bevel gear and a helical gear		
Output shaft rotational direction	See C9.		

Common to the motor and drive

	Items	Specifications
	Installation location	Indoor type: Indoors (area with minimal dust, no contact with water) Outdoor type: Indoors and outdoors (places where standard but not heavy rain falls) 1 G or less of vibration
Ambient	Ambient Temperature	-10°C to 40°C
conditions	Ambient humidity	85% or less
	Altitude	Elevation of 1000m or lower
	Atmosphere	No corrosive or volatile gases, no steam, etc.
	Athosphere	Dust-free and well-ventilated area.
	Installation Method	On-axis mounting and universal mounting
Paint		Direct coupling by a mechanical shaft and a hollow shaft
		Coating: Phthalic acid-based Color: Munsell 6.5PB 3.6/8.2 reasonable approximation (Danube blue)

Outdoor (protection class IP44) specification

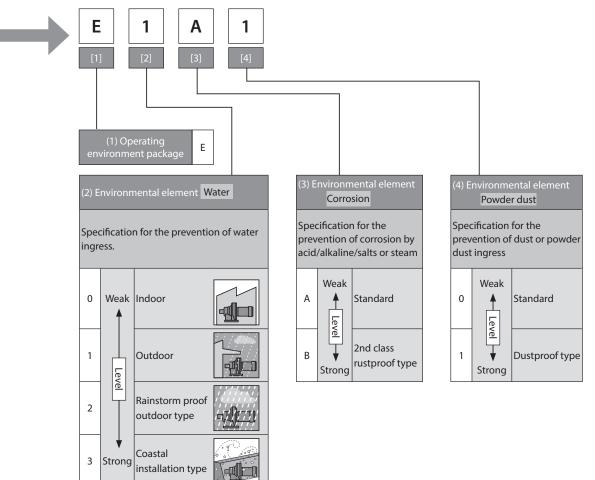
The specification allows use in areas not directly affected by heavy rain and wind, but where some rain may fall.

Installing a cover, or the rainstorm proof outdoor type (protection class IP55) is necessary in locations that are open-air environments and directly receive strong winds and rain.

Consult us for the specification details of the rainstorm proof outdoor type.

Further, since carbon steel is used for the shaft (or collar), there is the possibility of rust developing and progressing due to rainwater and condensation, leading to oil seal damage. Take periodic rust prevention measures.

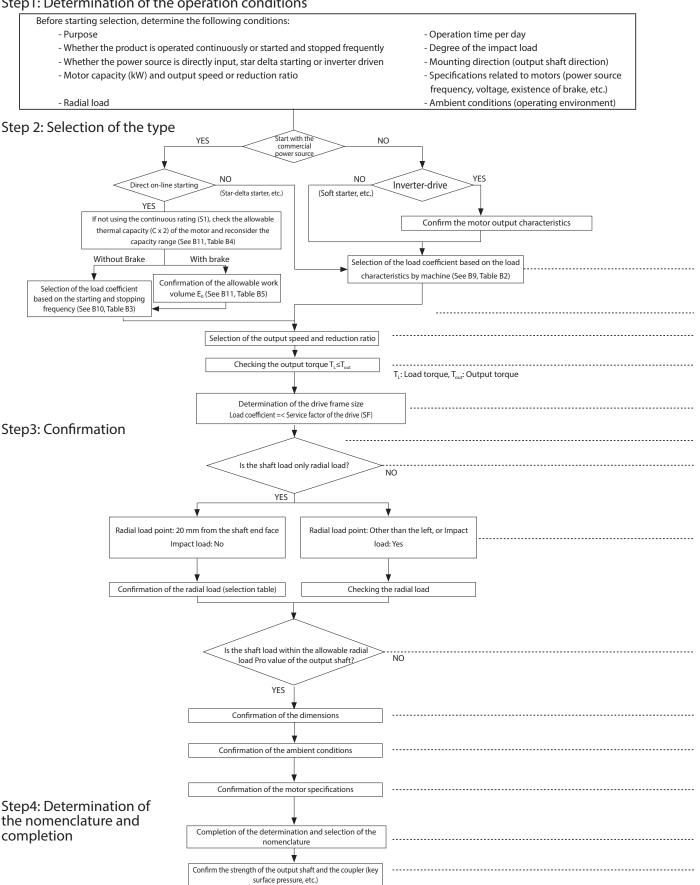
Bevel BUDDYBOX®


	Y M 3 - HZ522 - EP - B - 10 3] [4] [5] [6] [7] [8] [9] [10]
[1] Model code [2] Slow speed shaft direction	Bevel Buddybox drive L Universal mounting N
[3] Mounting style	Hollow shaft/On-axis mounting type Y
[4] Motor connection method	Motor directly connected M
[5] Special specification	Standard Specification Blank Special Specification S
[6] Input capacity code [7] Frame size	4P Capacity symbol kW (HP) 3 4 5 8 10 15 See the selection table starting on page B12. 3.0(4) 3.7(5) 5.5(7.5) 7.5(10) 11(15)
[7] Frame size [8] Suffix [9] Brake status	See the selection table starting on page B12. With Premium-efficiency, 3-phase motor With Premium-efficiency, 3-phase motor for inverter Without brake Blank With brake
[10] Reduction ratio	Nominal ratio (Prefer to selection table for actual ratio)

Gearmotors and Reducers have packaged specifications optimized for the usage environment. Choose the specification simply by selecting the levels to prevent three environmental elements (water, corrosion and powder dust).

Package no.

Please specify the package no. when placing an order or requesting for quotation.


Notes: 1. Consult us for details of the specification.

2. The best paint for each specification must be specified as an option, as separate from the operating environment package. See C43.

Select the type referring to the flow chart. If you are not sure of the selection method, please consult us.

Step1: Determination of the operation conditions

B6

Descriptions of terms

- Service factor (SF)

Value calculated by dividing the allowable input capacity of the drive by the motor capacity.

- Operating environment package

Package created to enable to determine the specifications just by selecting the levels to prevent three environmental elements (water, corrosion and powder dust) (See B5).

	Description of the procedure
·····Þ	- Select the load factor suitable for the applications from page B9.
•	 In the case of an operation in which starting and stopping is repeated, check the starting and stopping frequency and the load coefficient of the drive on page B10, and the allowable heat capacity of the motor on page B11 Further, if with a brake, confirm that the braking workload is equal to or less than the allowable workload E₀ on page B11.
	- Confirm the brake torque on page C27.
 	- Open the page where your motor capacity is described in the selection table on page B12.
 ·····Þ	- Select the column where the values closest to the output speed or reduction ratio in use is described in the selection table.
 •••••	- Confirm that the output torque meets your usage value. If the output torque is insufficient, use a one-class larger motor capacity.
 ·····Þ	- Select a combination with a larger service factor (SF) then the selected load coefficient from the selection table.
 ·····Þ	- Check whether the only load that is applied to the output shaft of the drive is radial load.
 ·····Þ	- Please use the Bevel Buddybox 4 series.
 ·····Þ	- Consult us.
 Þ	- Please use the Bevel Buddybox 4 series.
 ·····Þ	- Confirm the dimensions. If it is not compatible with your operating conditions, please consult us.
 ►	 Confirm that the selected combination is suitable for conditions such as the surrounding environment using the "Standard Specifications" on pages B2 and B3. Also specify "Operating environment packages" as per B5.
 ·····Þ	- Confirm that the motor directly connected to the selected type is compatible with your operating conditions (power source, environment, thermal class, etc.).
 ·····Þ	- For the selected model, determine the nomenclature by referring to "Nomenclature" on page B4. The type selection is completed.
 ·····Þ	- Confirm with the maximum torque at starting and stopping.

Select the type using an example according to the selection procedure on B6.

○ Operating conditions			
- Use:	Chain conveyor	- Motor specifications	
- Operation pattern:	Continuous operation	Power source frequency:	50Hz
- Operation time per day:	24 hours/day	Voltage:	200V
- Load capacity:	6.5kW	Brake:	No
- Output speed:	145r/min		
- Connection with the other machines:	Hollow shaft on-axis mounting	Other:	Indoor type
	Torque arm fixing		
Load location:	20 mm from shaft end face	- Ambient conditions	
Radial load:	3000N	Ambient temperature 20 $^\circ \! C$	Indoor
- Level of impact load:	No impact		

Select the type based on the following conditions.

Usage conditions and selection and calculation results		Page in this catalog					
 ○ Selection of the load coefficient Load characteristics of chain conveyor use → U (uniform load) Load coefficient = 1.25 (U, operating 24 hours/day) 	Page B9 Table B2 Table B1	Load characteristics table by machine, load coefficient Load coefficient					
\bigcirc Selection of the motor capacity Load capacity = 6.5kW → Motor capacity = 7.5kW	Page B14	Gearmotor selection table					
 Selection of the output speed Power source frequency 50Hz, output speed 145r/min -> 1450/145 = 10:1 ratio 	Page B14	Gearmotor selection table					
○ Confirmation of the output torque $T_{L} = \frac{9550 \times 6.5 \text{ (kW)}}{1450} \times 10 = 428\text{N} \cdot \text{m} \leq 468\text{N} \cdot \text{m} \rightarrow \text{OK}$	Page B14	Gearmotor selection table					
Tı: Load torque ○ Determination of the drive frame size Load coefficient = 1.25 ≤ 1.46 Drive frame size and reduction ratio: 10-HZ524-EP-10	Page B14	Gearmotor selection table					
○ Check of the radial load $Pr \le Pro/Cf$ $3000 (N) \le 5450 (N)/1 = 5450 (N) \rightarrow OK$	Page B14	Gearmotor selection table					
 Confirmation of the dimensions Confirm with the dimension table 	Page B17	Dimension table					
\bigcirc Confirmation of the ambient conditions Ambient temperature 20°C → OK	Page B3	Standard Specification					
\bigcirc Confirmation of the motor specifications 200V, 50Hz, indoor type \rightarrow Standard specification is OK	Page B2	Standard Specification					
\odot Determination of the nomenclature	Page B4	Nomenclature					
Determined nomenclature: LNYM10-HZ524-EP-10							
Selection is completed.							

The Bevel Buddybox Drive H series is designed for operating conditions of uniform load and 10 hours per day of use. The following load coefficient must be anticipated in cases where daily machine use exceeds 10 hours per day, or depending on the load conditions of the machine in use.

U: Uniform load

The selection methods of the load coefficient are divided into (1) or (2) below:

(1) Selection based on the load characteristics by machine

[Classification of the load coefficient	[Classification]	of the	load	coefficient
---	--------------------------	--------	------	-------------

M: Light impact

H: Heavy impact

Table B1, Load coefficient of the drive

Operation time	Up	to 10 hours/	day	Up to 24 hours/day		
	U	М	Н	U	М	Н
Load coefficient	1.00	1.25	1.75	1.25	1.50	2.00

Note) The load coefficient is different to that of the Bevel Buddybox 4 series and 5 series.

Table B2, Load characteristics by machine

Compressor and pump		Selection machine		Food		Sugar refining	
Compressor		Classifier	М	Rice milling machine	U	Cane knife	М
Reciprocating type Multi-cylinde	r M	Screen		Beet slicer	М	Crusher	М
Single cylind	er H	rotary (stone and gravel)	м	Dow mixer	М	Mill	н
Pump		Air system	U	Meat grinder	м	Oil refining	
Centrifugal	U	Traveling screen	U	Dryer	*	Chiller	м
Fin type	м			Diyei			
Reciprocating type		Mill		Brewing and distilling		Paraffin filter press	M
Singe-acting 3-cylinder or more	М	Crasher		Canning machine, bottling machine	U	Rotary kiln	М
Double-acting 2-cylinder or more	м	Ore and stone	н	Brew kettle (continuous)	U	Cement	
Rotary (gear type, etc.)	*	Mill (rotary)		Mash tub (continuous)	U	Dryer, cooler	м
Transport and hoisting mack	nine	Ball Bevel) н	Cooker (continuous)	U	Cement kiln	111
Elevator	mic	Rod hammer	{	Scale hopper (frequent starting)	м	Cement kiin	
		Kiln Tumbler	́м н	Scale hopper (frequent starting)	IVI	Fiber and spinning and wear	vin
Bucket uniform load Heavy load	U M	Sand Muller	н М	Paper making		Batcher, calendar, and card	• • • • •
Escalator	U	Sand Muller	IVI	Aerator	*	Dryer and dyeing machine	
Flight	м	Printing machine	*	Agitator	м		М
For passengers and workers	*			Barker auxiliary (Hydraulic type)	M	Mangle, napper, pad	IVI
Water gate	*	Washing machine	м			Slasher, soaper, and winder	
Car dumper	н	5	.*1	Mechanical barker	M	Spinning machine, stenter, and wash	
Carpuller	м	Machine tool		Drum barker	н	Cloth finishing machine	Μ
Crane hoist		Tapping machine	Н	Beater, pulper	М	Washer, pad, stenter	
Main hoisting Medium load	м	Punch press (gear driven)	н	Bleaching machine	U	(dryer, calendar, etc.)	
Heavy load	н	Planar	н	Conveyor	U	Ship	
Skip hoist	M	Bending roll	м	Conveyor (for logs)	Н	Barge tower	н
Girder traveling and trolley traverse	*	General machine tools		Cutter, plater	н		п *
Conveyor (uniform load)				Cylinder	М	Windlass	
Apron, assembly,		Rubber and plastic		Reel (for pulp)	М	Steering engine	M *
Belt, bucket,		Extruder		Chest	м	Capstan and cargo winch	
chain, flight,	U	Rod, pipe, and tube	U	Washer, thickener	м	Mooring winch	*
oven, and screw		Blow molding machine	м	Paper machine		Turning gear	*
conveyor (heavy load and		Pre-plasticizer	м	Couch	м		
fluctuating feed)		Others	*	Suction roll	U	Ceramics industry	
Apron, assembly,		Mixer	н	Press	Ŭ	Brick press, briquetting machine	
belt, and bucket,	M	Rubber Calendar	м	Dryer	M	Pug mill	Μ
Chain, flight J		Rubber mill (2 or more paralle	s) M	Calendar	М	General ceramics machinery	М
oven, screw		Sheeter, refiner	M	Super calendar	н		
reciprocating, and shaker	Н	Tuber, strainer	м	Winder	U	Water treatment	
Stoker	U	Cracker	н	In a market start of the second		Clarifier	U
Dry dock crane	*	Dryer	*	Ironmaking		Bar screen	U
Feeder		Diyei		Bridle roll drive	Н	Chemical filter	U
Disk	U	Dredger		Slug pusher	М	Collector	U
Apron, belt, and screw	М	Cable reel, conveyor	м	Draw bench (truck, main drive)	Н	Dehydration screen	Μ
Reciprocating	Н	Cutter head drive	н	Molding machine	Н	Scum breaker	Ν
Mixing machine		Jig drive	н	Slitter	М	Mixer	Ν
5		Screen drive	н	Table conveyor	*	Thickener	N
Agitator Pure liquid	U	Stacker, winch	м	Pinch dryer, scrubber roll	*	Vacuum filter	N
Pure liquid Liquid (changing density)	M	Stacker, which	IVI	Wire drawing machine, rolling mill	м	Aerator	*
Liquid (changing density) Liquid and solid	M			Wire winder	M	Flocculator	Μ
Mixer	141			Reel (for strip)	M		U
	U				IVI	Rotary screen	U
	0					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	*
Constant density	м					Wood industries	
	M M					Wood industries	

For machines with * symbol or not described in the table, please consult us.

Note) Since the names and machine characteristics in this table may differ from those of the machine to be used, please use the values in this table as a reference only.

B9

(2) Selection based on the starting and stopping frequency

If the machine is starting and stopping frequently during operation, select the product based on the starting and stopping frequency and the load coefficient of the drive (Table B3). At the same time, confirm the allowable heat capacity of the motor as shown in Table B4. Further, calculate the braking workload of for brakemotors by referencing page C27. Confirm that it is equal to or less than the allowable workload E_0 described in Table B5. (Also confirm it for emergency stopping.)

Table B3 Starting and stopping frequency and load coefficient of the drive

Premium-efficiency, 3-phase motor

Starting and stopping frequency	Less than 10 hours a day			Less than 24 hours a day		
(times/hour)	I	II	III	I	II	III
1 or less	1.00	1.15	1.50	1.20	1.30	1.65
3 or less	1.00	1.25	1.60	1.20	1.40	1.70
10 or less	1.00	1.35	1.70	1.20	1.50	1.80
60 or less	1.00	1.45	1.75	1.25	1.65	2.00

Inertia moment of the load converted to the motor shaft

(GD² of the load converted to the motor shaft)

Inertia moment (GD²) ratio =

Inertia moment of the motor (GD² of the motor)

I: Allowable inertia moment (GD²) ratio =< 0.3

Classification of the load coefficient

II: Allowable inertia moment (GD^2) ratio =< 3 III: Allowable inertia moment (GD^2) ratio =< 10

Notes) 1. The load coefficient is different to that of the Bevel Buddybox 4 series and 5 series.

2. Include the number of times that braking by brake, clutch etc. occur in the starting/stopping count.

3. If the machine is started under torque and radial loads, please consult us because it may be necessary to consider other options.

4. If the ratio of the starting and stopping frequency to the inertia moment (GD²) exceeds the above-mentioned value, please consult us.

Precautions

- With premium efficiency 3-phase motors, since the starting torque and stall torque (maximum torque) are large, selection procedures, starting and stopping frequencies, and the load coefficient of the drive are different from conventional motors.

		10		Allowab	le C x Z		Moment of inerti	a of the motor kg·m ²	Motor GE	D² kgf•m²
	kW :	x 4P	(35%ED or less)	(Over 35%ED to 50%ED or less)	(Over 50%ED to 80%ED or less)	(Over 80%ED to 100%ED or less)	Standard	With brake	Standard	With brake
	Pre	2.2	1000	900	400	200	0.00880	0.00978	0.0352	0.0391
3-pt	nium-eff	3.0	1000	900	400	200	0.0100	0.0110	0.0400	0.0440
hase		3.7	800	800	800	700	0.0194	0.0209	0.0777	0.0835
3		5.5	300	300	200	150	0.0291	0.0306	0.116	0.122
otor	cier	7.5	400	350	300	300	0.0409	0.0450	0.164	0.180
	ncy,	11	200	200	150	150	0.0561	0.0602	0.224	0.241

Table B4 Allowable heat capacity of the motor (C x Z)

Check that C x Z calculated in (1) through (3) below is within the allowable CZ in the motor capacity-%ED corresponding to Table B4.

(1) You can calculate C from the following equation.

 $C = - \frac{J_M + J_L}{J_M}$

[Sl unit]

J_M; Moment of inertia of the motor (kg⋅m²)

 J_{L} ; Motor axis conversion, Total moments of inertia excluding the motor (kg·m²)

 GD_{M}^{2} ; Motor GD^{2} (kgf·m²) GD_{L}^{2} ; Motor axis conversion, total GD excluding the motor² (kgf·m²)

 $C = \frac{GD_{M}^{2} + GD_{L}^{2}}{GD_{M}^{2}}$

- (2) Calculate the number of times starting occurs per hour (times/hr).
 - (A) Assuming, of one cycle, the operation time to be t_a(s) and the pause time to be t_b(s), when starting n_r(times/cycle) during this period

[Gravity unit]

$$Z_r = \frac{3600n_r}{t_a + t_b} \text{ (times/hr)}$$

(B) Further, when including the number of times of inching n_i (times/cycle) during 1 cycle (t_a+t_b), this is converted to the number of times of starting, in which it is converted to the number of times of inching per hour Z_i .

$$Z_{i} = \frac{3600n_{i}}{t_{a} + t_{b}} (times/hr)$$

(c) Calculate the number of times of starting per hour Z (times/hr) from (a) and (b).

$$Z = Z_r + \frac{1}{2}Z_i = \frac{3600}{t_a + t_b} \cdot (n_r + \frac{1}{2}n_i)$$
 (times/hr)

(3) Calculate C x Z.

Calculate the product of C calculated in (1) and Z calculated in (2): C x Z.

(4) Load time rate %ED

$$\%ED = \frac{t_{a}}{t_{a} + t_{b}} \times 100$$

Table B5 Allowable work volume of the motor brake $E_{\scriptscriptstyle 0}$

Unit: E₀ (J/min)

Proko tvrog	FB-3E	FB-5E	FB-10E
Brake type	FB-4E	FB-8E	FB-15E
Allowable work volume E ₀	5720	6900	10800

For brake types, see C28.

Bevel BUDDYBOX® Selection table

	Frequency	50Hz	60Hz	
	Number of motor	4		
	Motor speed n ₁	r/min	1450	1750

Suffix EP: Premium-efficiency, 3-phase motor AP: Premium-efficiency, 3-phase motor for inverter

		50)Hz					60	Hz				Nomenclatur	e (see page	e B4)	
Output speed n ₂	Output Tc	torque out	Allowab load Pro output	o of the	SF	Output speed	Output	t torque	Allowab load of th sha	e output	SF	Capacity symbol	Frame size	Suffix	Reduction ratio	Dimension diagrams (page)
r/min	N∙m	kgf∙m	Ν	kgf		r/min	N∙m	kgf∙m	Ν	kgf						
287	69.6	7.11	5950	607	2.50	346	57.7	5.89	5750	587	3.00	3	- HZ522 ·	- EP AP	- 5	
207	96.4	9.84	6510	664	2.50	250	79.8	8.15	6300	643	3.00	3	- HZ522 ·	- EP AP	- 7	
145	138	14.1	7100	724	2.50	175	114	11.6	6910	705	3.00	3	- HZ522 ·	EP AP	- 10	D1 6
119	168	17.2	7430	758	2.50	143	139	14.2	7250	740	3.00	3	- HZ522 ·	EP AP	- 12	B16
95.1	210	21.4	7740	790	2.50	115	174	17.8	7590	774	3.00	3	- HZ522 ·	EP AP	- 15	
74.8	267	27.2	7930	809	2.50	90.3	221	22.6	7840	800	3.00	3	- HZ522 ·	EP AP	- 20	

	Frequency	Hz	50Hz	60Hz		Suffix			
3.0kW	Number of motor p	oles P	2	1		EP: Premium-efficiency, 3-phase motor			
	Motor speed n ₁	1450 1750			Lr. riemum-enciency, 5-phase motor				

		50)Hz					60)Hz			Nomenclature (see page B4)							
Output speed n ₂	•	t torque out	Allowab load Pro output	o of the	SF	Output speed	Output	torque	Allowab load of th sha	e output	SF	Capacity symbol		Frame size		Suffix		Reduction ratio	Dimension diagrams (page)
r/min	N∙m	kgf∙m	Ν	kgf		r/min	N∙m	kgf∙m	Ν	kgf									
287	95.0	9.69	5950	607	1.83	346	78.7	8.03	5750	587	2.20	4	-	HZ522	-	EP	-	5	
207	131	13.4	6510	664	1.83	250	109	11.1	6300	643	2.20	4	-	HZ522	-	EP	-	7	
145	188	19.2	7100	724	1.83	175	156	15.9	6910	705	2.20	4	-	HZ522	-	EP	-	10	DIC
119	229	23.4	7430	758	1.83	143	190	19.4	7250	740	2.20	4	-	HZ522	-	EP	-	12	B16
95.1	286	29.2	7740	790	1.83	115	237	24.2	7590	774	2.20	4	-	HZ522	-	EP	-	15	
74.8	364	37.1	7930	809	1.83	90.3	301	30.8	7840	800	2.20	4	-	HZ522	-	EP	-	20	

Actual reduction ratio

Frame			Reduct	ion ratio		
size	5	7	10	12	15	20
HZ522	5.059	7	10	12.21	15.25	19.39

Note) 1. See page B4 for the nomenclature of the models listed in the selection table.

2. The allowable radial load Pro of the output shaft is the value at 20 mm from the shaft end face.

- 3. The motor speed n_1 described above is a representative value, and the output speed n_2 depends on this motor speed. See page C18 of the technical data for details on the motor speed.
- 4. The contents of this table may be changed without notice.

B12

Bevel BUDDYBOX®

	Frequency	Hz	50Hz	60Hz	Suffix
3.7kW	Number of motor p	oles P	4	4	EP: Premium-efficiency, 3-phase motor
	Motor speed n ₁	r/min	1450	1750	AP: Premium-efficiency, 3-phase motor for inverter

		50	Hz					60	OHz				Nomenclat	ure (s	see page	B4)		
Output speed n ₂		torque out	Allowab Ioad Pro outpu	o of the	SF	Output Speed	Output	t torque	Allowab load of th sha	e output	SF	Capacity symbol	Frame size		Suffix	R	eduction ratio	Dimension diagrams (page)
r/min	N∙m	kgf∙m	Ν	kgf		r/min	N∙m	kgf∙m	Ν	kgf								
287	117	12.0	5950	607	1.49	346	97.0	9.91	5750	587	1.78	5	- HZ522	-	EP AP	-	5	
207	162	16.5	6510	664	1.49	250	134	13.7	6300	643	1.78	5	- HZ522	-	EP AP	-	7	
145	232	23.6	7100	724	1.49	175	192	19.6	6910	705	1.78	5	- HZ522	-	EP AP	-	10	Dic
119	283	28.9	7430	758	1.49	143	234	23.9	7250	740	1.78	5	- HZ522	-	EP AP	-	12	B16
95.1	353	36.0	7740	790	1.49	115	293	29.9	7590	774	1.78	5	- HZ522	-	EP AP	-	15	
74.8	449	45.8	7930	809	1.49	90.3	372	38.0	7840	800	1.78	5	- HZ522	-	EP AP	-	20	

	Frequency	Hz	50Hz	60Hz	Suffix
5.5kW	Number of motor p	oles P	4	1	EP: Premium-efficiency, 3-phase motor
	Motor speed n ₁	r/min	1450	1750	AP: Premium-efficiency, 3-phase motor for inverter

		50H	lz					60	Hz			N	lomenclatu	ıre (see	e pag	je B4)	
Output speed n ₂		t torque out	load Pr	ole radial o of the t shaft	SF	Output speed	Output	t torque	Allowab load c output	of the	SF	Capacity symbol	Frame size	Su	ıffix	Reduction ratio	Dimension diagrams (page)
r/min	N∙m	kgf∙m	Ν	kgf		r/min	N∙m	kgf∙m	Ν	kgf							
282	177	18.1	5580	569	1.36	340	147	15.0	5440	555	1.64	8	- HZ523	-	EP \P	- 5	
206	242	24.7	5980	610	1.36	248	201	20.5	5870	599	1.64	8	- HZ523	-	EP \P	- 7	
147	338	34.5	6320	645	1.36	178	280	28.6	6250	638	1.64	8	- HZ523	-	EP \P	- 10	B16
119	420	42.9	6420	655	1.36	143	348	35.5	6410	654	1.64	8	- HZ523	-	EP \P	- 12	
99.7	500	51.1	6480	661	1.36	120	415	42.3	6520	665	1.64	8	- HZ523	-	EP \P	- 15	
71.1	701	71.6	12200	1240	2.00	85.9	581	59.3	12000	1220	2.40	8	- HA635	-	EP \P	- 20	B18

Actual reduction ratio

Frame			Reducti	on ratio		
size	5	7	10	12	15	20
HZ522	5.059	7	10	12.21	15.25	19.39
HZ523	5.143	7.043	9.833	12.20	14.54	
HA635						20.38

Note) 1. See page B4 for the nomenclature of the models listed in the selection table.

2. The allowable radial load Pro of the output shaft is the value at 20 mm from the shaft end face.

3. The motor speed n_1 described above is a representative value, and the output speed n_2 depends on this motor speed. See page C18 of the technical data for details on the motor speed.

4. The contents of this table may be changed without notice.

Bevel BUDDYBOX® Selection table

	Frequency	Hz	50Hz	60Hz
7.5kW	Number of motor	ooles P	4	1
	Motor speed n ₁	r/min	1450	1750

Suffix EP: Premium-efficiency, 3-phase motor AP: Premium-efficiency, 3-phase motor for inverter

		50)Hz					60)Hz				Nomenclate	ure (s	ee pag	e B4)	
Output speed n ₂		t torque out	Allowab load Pro output	o of the	SF	Output Speed	Output	t torque	Allowab load of th sha	e output	SF	Capacity symbol	Frame size		Suffix		Reduction ratio	Dimension diagrams (page)
r/min	N∙m	kgf∙m	Ν	kgf		r/min	N∙m	kgf∙m	Ν	kgf								
292	233	23.8	5130	523	1.47	352	193	19.7	5060	516	1.76	10	- HZ524	-	EP AP	-	5	
211	322	32.9	5380	549	1.47	255	267	27.3	5350	546	1.76	10	- HZ524	-	EP AP	-	7	B17
146	468	47.7	5450	556	1.47	176	387	39.6	5530	564	1.76	10	- HZ524	-	EP AP	-	10	
117	580	59.2	12000	1220	2.00	142	480	49.0	11700	1190	2.40	10	- HA635	-	EP AP	-	12	
97.6	698	71.2	12500	1270	2.00	118	578	59.0	12200	1240	2.40	10	- HA635	-	EP AP	-	15	B19
71.1	956	97.6	12200	1240	1.47	85.9	792	80.9	12000	1220	1.76	10	- HA635	-	EP AP	-	20	

	Frequency	Hz	50Hz	60Hz	Suffix
11kW	Number of motor p	oles P	4	1	EP: Premium-efficiency, 3-phase motor
	Motor speed n ₁	r/min	1450	1750	AP: Premium-efficiency, 3-phase motor for inverter

		50)Hz					60)Hz				Nomenclatu	ıre (see	page	e B4)	
Output speed n ₂	Output Tc	torque out	Allowab load Pro output	o of the	SF	Output speed	Output	t torque	Allowab load of th sha	e output	SF	Capacity symbol	Frame size	Su	ffix	Reductior ratio	Dimension diagrams (page)
r/min	N∙m	kgf∙m	Ν	kgf		r/min	N∙m	kgf∙m	Ν	kgf							
289	346	35.3	8740	892	1.68	349	286	29.2	8540	871	2.02	15	- HA635	-	EP NP	- 5	
209	478	48.8	9690	989	1.68	252	396	40.5	9470	966	2.02	15	- HA635	_	EP NP	- 7	
145	688	70.3	10200	1040	1.68	175	570	58.2	10100	1030	2.02	15	- HA635	-	EP NP	- 10	B19
117	850	86.8	10300	1050	1.47	142	704	71.9	10300	1050	1.64	15	- HA635	-	EP NP	- 12	
97.6	1020	104	10500	1070	1.47	118	848	86.5	10500	1070	1.64	15	- HA635	-	EP NP	- 15	

Actual reduction ratio

Frame			Reducti	on ratio		
size	5	7	10	12	15	20
HZ524	4.969	6.868	9.964			
HA635	5.020	6.949	10	12.35	14.86	20.38

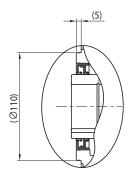
Note) 1. See page B4 for the nomenclature of the models listed in the selection table.

2. The allowable radial load Pro of the output shaft is the value at 20 mm from the shaft end face.

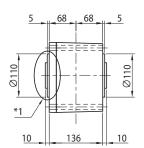
3. The motor speed n_1 described above is a representative value, and the output speed n_2 depends on this motor speed.

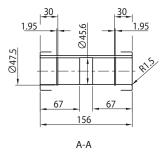
See page C18 of the technical data for details on the motor speed.

4. The contents of this table may be changed without notice.



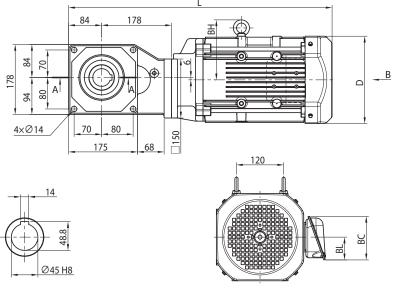
BIBUS s.r.o. +420 547 125 300 www.bibus.cz


B15


<code>LNYMΔ</code> - HZ522 to HZ523 - EP(-B) - reduction ratio LNYMA - HZ522 to HZ523 - AP(-B) - reduction ratio

BA C 110 $\overline{(}$ 110 Ø114

*1 Details on Part 1



Frame

size

HZ522

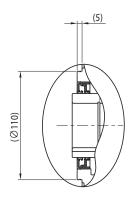
HZ523

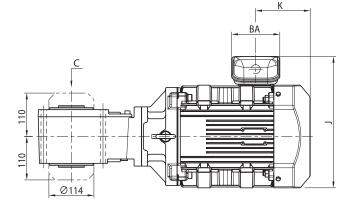
С

Capacity	Capacity				Withou	t brake	Indoor		With br	ake (B)				Withou		Outdoor		With br	ake (B)		Termin dimer
	symbol	BH	J	К	D	L	Mass (kg)	к	D	L	Mass (kg)	J	к	D	L	Mass (kg)	к	D	L	Mass (kg)	nal box insion
2.2	3	125	150	115	184	592	49	193	184	670	56	183	115	184	592	50	193	184	670	57	
3.0	4	125	150	115	□184	606	51	193	□184	684	58	183	115	□184	606	52	193	184	684	59	
3.7	5	153	166	118	222	627	60	208	222	717	71	199	118	222	627	61	208	222	717	72	а
5.5	8	153	166	118	222	670	72	208	222	760	83	199	118	222	670	73	208	222	760	84	

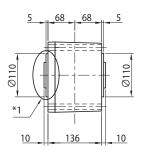
Terminal box		Indoor		(Outdoo	r
dimension	BA	BC	BL	BA	BC	BL
a	100	111	58	123	151	87

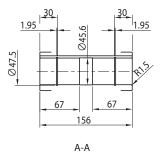
В

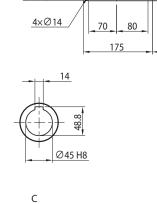

A capacity symbol for the motor is entered in nomenclature $\Delta.$ Note) 1


2 Output shaft bore diameter dimension: Dimension tolerance is JIS B 0401-1998 "H8."

3 Output shaft keyway dimension: Conforms to JIS B 1301-1996 (ISO) "Keys and their corresponding keyways (normal form)."


LNYM10 - HZ524 - EP(-B) - reduction ratio LNYM10 - HZ524 - AP(-B) - reduction ratio



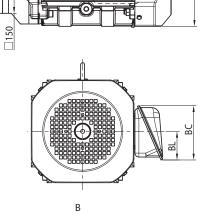


품

*1 Details on Part 1

84

84


94 8 A

178

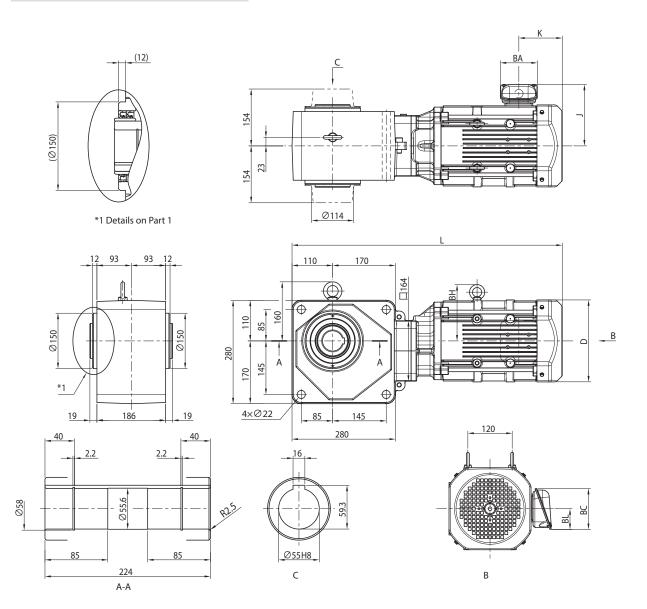
178

6

68

В

	Capacity							Indoor									Outdoor					Ter
Frame		Capacity	вн			Without	t brake			With br	ake (B)				Withou	t brake			With br	ake (B)		mir
size	кvv x4P	symbol	БП	J	К	D	L	Mass (kg)	к	D	L	Mass (kg)	J	к	D	L	Mass (kg)	К	D	L	Mass (kg)	nal box nsion
HZ524	7.5	10	174	203	138	260	689	88	243	260	794	108	235	138	260	689	89	243	260	794	109	b

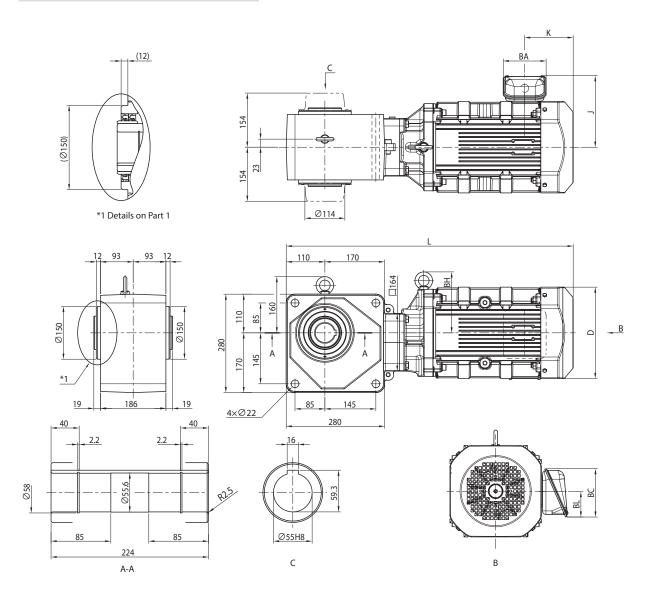

Terminal box		Indoor		(Outdoo	r
dimension	BA	BC	BL	BA	BC	BL
b	122	138	72	154	184	105

Note) 1 Output shaft bore diameter dimension: Dimension tolerance is JIS B 0401-1998 "H8."

2 Output shaft keyway dimension: Conforms to JIS B 1301-1996 (ISO) "Keys and their corresponding keyways (normal form)."

LNYM8 - HA635 - EP(-B) - reduction ratio LNYM8 - HA635 - AP(-B) - reduction ratio

	Capacity							Indoor									Outdoor					Ter di
Frame	kW	Capacity	вн			Withou	t brake			With br	ake (B)				Withou	t brake			With br	ake (B)		mir
size	x4P	symbol	БП	J	к	D	L	Mass (kg)	К	D	L	Mass (kg)	J	к	D	L	Mass (kg)	К	D	L	Mass (kg)	hal box nsion
HA635	5.5	8	153	166	118	222	732	95	208	222	822	106	199	118	222	732	96	208	222	822	107	а


Terminal box		Indoor		(Outdoo	r
dimension	BA	BC	BL	BA	BC	BL
а	100	111	58	123	151	87

Output shaft bore diameter dimension: Dimension tolerance is JIS B 0401-1998 "H8." Note) 1

Output shaft keyway dimension: Conforms to JIS B 1301-1996 (ISO) "Keys and their corresponding keyways (normal form)." 2 3

LNYMA - HA635 - EP(-B) - reduction ratio LNYMA - HA635 - AP(-B) - reduction ratio

	Capacity							Indoor									Outdoor					Ter
Frame	kW	Capacity	вн			Withou	t brake			With b	ake (B)		J		Withou	t brake			With br	ake (B)		mir
size		symbol	БЦ	J	к	D	L	Mass (kg)	К	D	L	Mass (kg)		к	D	L	Mass (kg)	к	D	L	Mass (kg)	nal box nsion
HA635	7.5	10	174	203	138	260	755	111	243	260	860	131	235	138	260	755	112	243	260	860	132	h
TA055	11	15	174	203	138	260	816	129	243	260	921	149	235	138	260	816	130	243	260	921	150	מן

Terminal box		Indoor		(Outdoo	r
dimension	BA	BC	BL	BA	BC	BL
b	122	138	72	154	184	105

Note) 1

A capacity symbol for the motor is entered in nomenclature Δ. Output shaft bore diameter dimension: Dimension tolerance is JIS B 0401-1998 "H8." 2

3 Output shaft keyway dimension: Conforms to JIS B 1301-1996 (ISO) "Keys and their corresponding keyways (normal form)."

C Technical Data

	Page
Construction drawing	C2
How to see nameplates	C3
Lubrication	C4
Moment of inertia, GD ²	C5
Output shaft rotational direction	C9
Output shaft hole diameter	C9
Output shaft (hollow shaft) handling document	C10
Motor characteristics table	C18
Terminal box specification	C20
Motor fan cover	C26
Motor brake	C27
Wiring	C33
Protection type and cooling type	C42
Paint and rust prevention	C43

BIBUS s.r.o. +420 547 125 300 www.bibus.cz

C1

Construction

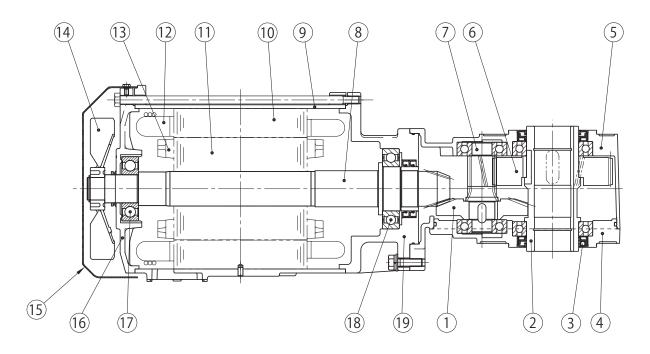
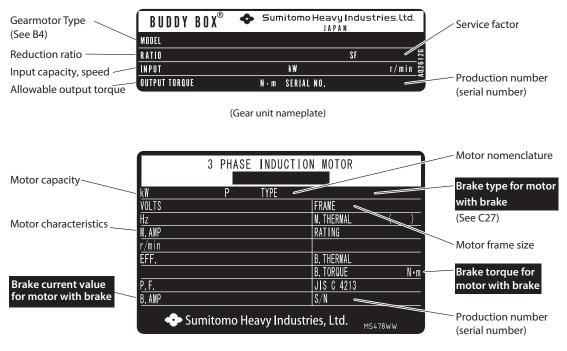
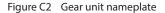
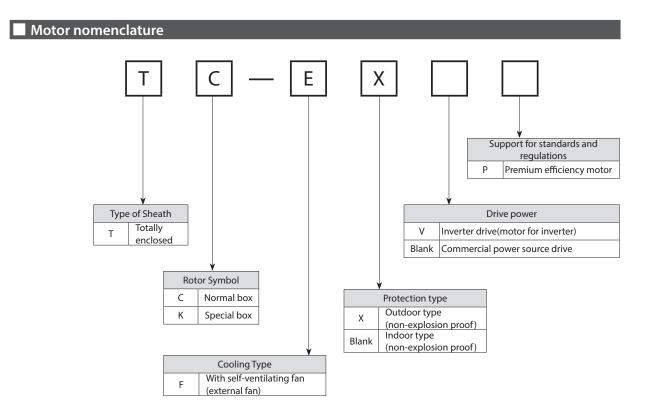



Figure C1 LNYM8-HZ523-EP


Table C1 Ge	armotor main parts				
Part number (PN)	Part Name	Part number (PN)	Part Name	Part number (PN)	Part Name
1	Bevel gear	8	Bevel pinion shaft	15	Fan cover
2	Output Shaft	9	Motor frame	16	Anti-load side cover
3	Oil seal	10	Stationary core	17	Bearing
4	Case (1)	11	Rotor core	18	Bearing
5	Case (2)	12	Stationary coil	19	Motor flange bracket
6	Gear	13	Rotor conductor		
7	Pinion shaft	14	Fan		



Gearmotor (motor directly connected)

(Motor unit nameplate)

Standard lubrication

- The gear part is filled with long-life grease, so long-term use is possible without replenishment. However, an even longer product life can be achieved by carrying out an overhaul at roughly 20,000 hours or 3 to 5 years.
- Overhauling of the gearmotor requires skill, so always carry it out at one of our authorized service stations.

Precautions for oil seal

- Oil seals have a service life, so the sealing effect may decrease over time due to natural deterioration and wear. The service life length will vary widely depending on the drive operating conditions and the surrounding environment. Given normal operation, (uniform load, running 10 hours per day, normal temperature) as a guideline it is recommended to change them every 1 to 3 years. Meanwhile, if rust is developing on the shaft (or collar) at that time, please have it replaced at the same time.
- Lubricating grease is applied to the oil seal. Oil from the grease described above may seep out during the early stages of operation. If oil seeps out, please wipe it off. If oil continues to seep out, replacement of the oil seal is recommended.

Inertia moment/GD² and starting time

To start the driven machine completely, the starting torque has to be sufficiently larger than the load torque and the motor torque has to exceed the load torque constantly from the start of operation to the achievement of the full-load speed.

The acceleration torque is the difference between the motor torque and the load torque during the starting period. Assuming the average acceleration torque to be \overline{Ta} (N·m, kgf·m), the starting time ts (s) until the rotation speed n (r/min) is calculated by the following formula using the moment of inertia or GD².

$$ts = \frac{(J_M + J_c + J_L)/n}{9.55 \cdot \overline{T}a}$$
(S) $ts = \frac{(GD_M^2 + GD_c^2 + GD^2)/n}{375 \cdot \overline{T}a}$ (S)

However, J_M: Inertia moment of the motor (including the brake drum) (kg-m²)

J_c: Inertia moment of CYCLO Drive (kg-m²)

 J_L : The moment of inertia (kg·m²) of driven machines (including couplings and pulleys) converted to the motor shaft.

 GD_{M}^{2} : GD^{2} of the motor (including brake drum) (kgf·m²)

 $GD_{c}^{2}: GD^{2}$ of the cyclo drive (kgf·m²)

 GD_{L}^{2} : GD^{2} (kgf·m²) of driven machines (including couplings and pulleys) converted to the motor.

Average acceleration torque Ta

Here the average torque means the difference between the motor torque and load torque as shown in the right figure, which is the average value of the actual torque to accelerate the load. To calculate the starting time, the motor torque curve and load torque curve are required. However, in this method, it is very difficult to calculate the average acceleration torque, so the average acceleration torque with the actual load is calculated as follows: In the case of full voltage starting, \overline{Ta} [N • m, kgf • m] of the average acceleration torque during the starting period is calculated approximately by the following formula.

Figure C3 Torque diagram

Ts: Starting torque Tm:Maximum torque (stall torque)

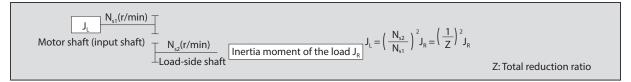
- Ta: Acceleration torque
- TL: Full-load torque
- ns: Synchronization rotation speed
- nL: Full-load rotation speed

 $\overline{\mathsf{T}}\mathsf{a} \doteqdot 0.8 \left(\frac{\mathsf{T}\mathsf{s} + \mathsf{T}\mathsf{m}}{2} \right) - \overline{\mathsf{T}}\mathsf{L}(\mathsf{N} \cdot \mathsf{m}, \mathsf{kgf} \cdot \mathsf{m})$

Also, the average load torque $\overline{T}L$ (N • m, kgf • m) during the starting period will be as follows if the motor full-load torque is TL:

In the case of constant load torque: $\overline{T}_L \rightleftharpoons T_L (N \cdot m, \text{kgf} \cdot m)$ In the case of double reduction torque: $\overline{T}_L \rightleftharpoons 0.34T_L (N \cdot m, \text{kgf} \cdot m)$

Calculation method of the moment of inertia J


(1) Inertia moment of the rotor

If the rotation shaft passes	s through the center of gravity	If the rotation shaft does not pass through the center of gravity				
D (m) M (kg)	$J = \frac{1}{8} MD^{2}[kg-m^{2}]$		$J = \frac{M}{4} \left(\frac{1}{2} D^2 + 4R^2 \right) \qquad [I]$	kg∙m²]		
D (m) d (m) M (kg)	$J = \frac{1}{8} M(D^{2} + d^{2})[kg - m^{2}]$	a (m) M (kg) b (m)	$J = \frac{M}{4} \left(\frac{a^2 + b^2}{3} + 4R^2 \right) $ [1]	kg∙m²]		
a [m] M [kg] b [m]	$J = \frac{1}{12}M(a^2 + b^2)[kg - m^2]$	c (m) M (kg) L (m)	$J = \frac{1}{12}M(4L^2 + C^2)$ [1]	kg-m²]		

(2) Inertia moment of the linear motion (inertia moment in the load-side shaft)

General purpose	M [kg]	$J = \frac{M}{4} \left(\frac{V}{\pi \cdot Ns} \right)^2 = \frac{M}{4} D^2$	[kg·m²]
Horizontal movement by the conveyor	$\begin{array}{c} M_{3} \ (kg) & \underbrace{V} \ (m/min) \ D \ (m) \\ M_{1} \ (kg) & \underbrace{D \ (m)} \\ \underline{D \ (m)} & \underbrace{M_{4}^{\dagger} \ (kg)} \\ \end{array} \\ \end{array} \\ \begin{array}{c} M_{4}^{\dagger} \ (kg) \end{array}$	$J = \frac{1}{4} \left(\frac{M_1 + M_2}{2} + M_3 + M_4 \right) \times D^2$	[kg·m²]
Horizontal movement by the lead screw	V (m/min) M [kg] Lead: P (m/rev)	$J = \frac{M}{4} \left(\frac{V}{\pi \cdot Ns} \right)^2 = \frac{M}{4} \left(\frac{P}{\pi} \right)^2$	[kg·m²]
Vertical movement by the hoisting machine	D (m) M1 (kg)	$J = \frac{M_1 D^2}{4} + \frac{1}{8} M_2 D^2$	[kg·m²]

(3) Conversion to the motor shaft (input shaft)

Calculation method of GD²

(1) GD^2 of the rotor

If the rotation shaft pas	ses through the cente	er of gravity	If the rotation shaft does not pass through the center of gravity				
D(m) W(kgf)	$GD^2 = \frac{1}{2}WD^2$	[kgf·m²]	$\underbrace{D(m)}_{W(kgf)}$	$GD^{2}=W\left(\frac{1}{2}D^{2}+4R^{2}\right)$	[kgf·m²]		
D(m) d(m) W(kgf)	$GD^2 = \frac{1}{2}W(D^2 + d^2)$	[kgf·m²]	a(m) W(kgf)	$GD^2 = W\left(\frac{a^2+b^2}{3}+4R^2\right)$	[kgf·m²]		
a(m) W(kgf) b(m)	$GD^2 = \frac{1}{3}W(a^2+b^2)$	[kgf·m²]	c(m) W(kgf) L(m)	$GD^2 = \frac{1}{3}W(4L^2 + C^2)$	[kgf·m²]		

(2) GD^2 of the linear motion (GD^2 in the load side)

General purpose	W (kgf)	$GD^2 = W\left(\frac{V}{\pi/N}\right)^2 = WD^2$	[kgf·m²]
Horizontal movement by the conveyor	$ \begin{array}{c} W_3 \ (kgf) & \underbrace{V} \ (m/min) \ D \ (m) \\ W_1 \ (kgf) & \underbrace{W_3 \ (kgf) \ W_4^{\dagger} \ (kgf) \ W_4^{\dagger} \ (kgf) \end{array} $	$GD^{2} = \left(\frac{W_{1} + W_{2}}{2} + W_{3} + W_{4}\right) \times D^{2}$	[kgf·m²]
Horizontal movement by the lead screw	W [kgf] N (rpm) Lead: P(m/rev)	$GD^2 = W\left(\frac{V}{\pi/N}\right)^2 = W\left(\frac{P}{\pi}\right)^2$	[kgf·m2]
Vertical movement by the hoisting machine	D (m) W1 (kgf) W1 (kgf)	$GD^2 = W_1D^2 + \frac{1}{2}W_2D^2$	[kgf·m2]

(3) Conversion to the motor shaft (input shaft)

Moment of inertia / GD² of the Bevel Buddybox Drive H Series

Display the moment of inertia and GD² in the motor shaft of the Bevel Buddybox Drive H Series.

Table C2 The moment of inertia J and GD² in the motor shaft of the Bevel Buddybox Drive H Series

Premium-efficiency, 3-phase motor

Unit: J _M (Moment of	inertia) [×kg·m ²]
GD_{M}^{2}	[×kqf·m ²]

										M		[/kgi/iii]
	2.2kW x 4P		3.0kW x 4P		3.7kW x 4P		5.5kW x 4P		7.5kW x 4P		11kW x 4P	
kW x P	J _M	GD ² _M										
Without brake	0.00880	0.0352	0.0100	0.0400	0.0194	0.0777	0.0291	0.116	0.0409	0.164	0.0561	0.224
With brake	0.00978	0.0391	0.0110	0.0440	0.0209	0.0835	0.0306	0.122	0.0450	0.180	0.0602	0.241

Premium-efficiency, 3-phase motor for inverter

Unit: J_M (Moment of inertia) [×kg·m²]

 GD_{M}^{2}

[×kgf·m²]

kW x P	2.2kW x 4P		3.0kW x 4P		3.7kW x 4P		5.5kW x 4P		7.5kW x 4P		11kW x 4P	
KVVXP	J _M	GD ² _M	J _M	GD^2_M								
Without brake	0.00880	0.0352	-	-	0.0194	0.0777	0.0291	0.116	0.0409	0.164	0.0561	0.224
With brake	0.00978	0.0391	_	_	0.0209	0.0835	0.0306	0.122	0.0450	0.180	0.0602	0.241

Notes: 1. The moment of inertia and GD^2 of the gear part and motor part are included in the values of the table.

2. The values in this table may be changed without notice.

Output shaft rotational direction

The motor shaft rotates to the right when viewed seen from the fan cover side, if connections are carried out according to the connection diagrams (during forward running) on pages C34 to C41.

The output shaft rotational direction at this time will be as follows.

Table C3 Output shaft rotational direction

Frame size	Reduction ratio								
HZ522	5, 7, 10, 12, 15, 20	-							
HZ523	5, 7, 10, 12, 15	-							
HZ524	5, 7, 10	-							
HA635	5, 7, 10, 12, 15	20							
Rotation direction									

Note) For reverse rotation, swap the Rs and Ts on pages C34 and C36-C39.

Output shaft bore diameter

The output shaft bore diameter can be made to an optional dimension, other than the standard dimension.

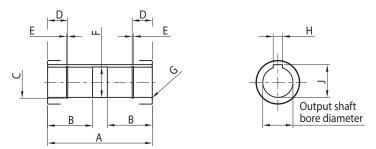


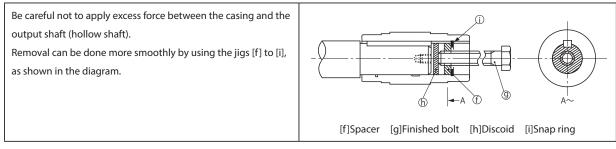
Figure C4 Output shaft bore diameter

Table C4 Output shaft bore diameter

	Frame size	Output shaft bore diameter	А	В	С	D	E	F	G	Н	J
	HZ522, HZ523, HZ524	Ø 40 (Optional)	150	60	Ø 42.5	30	1.95	Ø 40.6	R1.5	12	43.3
		Ø 45 (Standard)	156	67	Ø 47.5			Ø 45.6		14	48.8
	HA635	Ø 50 (Optional)	224	76	Ø 53	30	2.2	Ø 50.6	R1.5	14	53.8
		Ø 55 (Standard)	224	85	Ø 58	40	2.2	Ø 55.6	R2.5	16	59.3

Notes: 1. Output shaft bore diameter dimension: Dimension tolerance is JIS B 0401-1998 "H8."

2. Output shaft keyway dimension: Conforms to JIS B 1301-1996 (ISO) "Keys and their corresponding keyways (normal form)."



Attaching the output shaft (hollow shaft)

1. Attachment to the driven shaft

- Apply molybdenum disulfide grease to the surface of the driven shaft and the inner diameter of the output shaft (hollow shaft), and insert the drive into the driven shaft.
- If the fitting is tight, insert by lightly hitting the end face of the output shaft (hollow shaft) with a wooden hammer. Never hit the casing at this time. Additionally, as seen in the diagram, insertion can be done more smoothly by making and using jigs [a] to [e].
- The output shaft (hollow shaft) is made according to the JIS H8 tolerance.
 The recommended dimension tolerance of the driven shaft is as follows.
 When the load is uniform and a shock does not occur: JIS h6 or js6
- When there is an impact load or when the radial load is large: JIS js6 or k6 - The size of the snap ring is in accordance with the JIS B2804, C-type retaining ring.
- When making the driven shaft stepped, please check the shaft stress.

2. Removal from the driven shaft

[a] Snap ring

[d] Nut

[b] Spacer

[e] Screw bolt

3. The length of the driven shaft

The length L, for which the driven shaft is inserted, must be equal to or longer than the recommended length of the driven shaft.

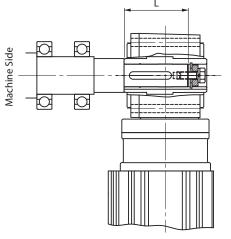
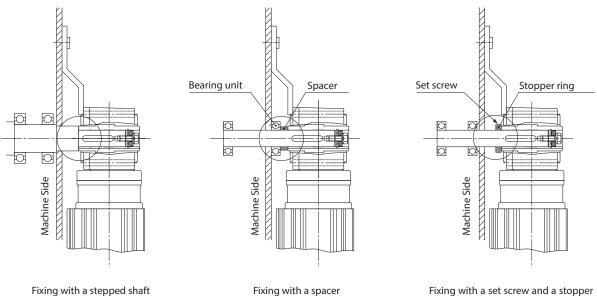


Figure C5 Driven shaft length

Table C5 Recommended length of driven shaft

From a size	Output shaft have diameter	Recommended length of	Effective length of driven
Frame size	Output shaft bore diameter	driven shaft	shaft key
	Ø 40	108	85
HZ522, HZ523, HZ524	Ø 45	104	70
	Ø 50	169	110
HA635	Ø 55	159	90



[c] Thrust bearing

Output shaft (hollow shaft) handling document

4. Fixing to the driven shaft

When locking with a torque arm, always fix the drive to the driven shaft.

(driven shaft not stepped)

Fixing with a set screw and a stopper ring (driven shaft not stepped)

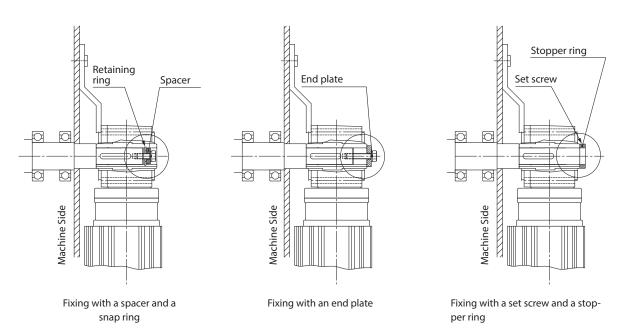
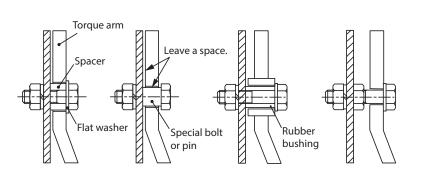
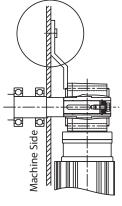



Figure C7 Fixing methods in which the present product does not move to the opposite of the machine.

5. Locking the torque arm


- [1] Attach the torque arm to the driven machine side of the case. Use a hexagon socket head bolt to mount on the case. (See Table C6 for size)
- [2] Allow a degree of freedom to the locking part of the torque arm so that excess force is not applied between the product and the driven shaft. Never fix the torque arm using a retainer bolt.
- [3] If starting and stopping frequency is high, and when repeating forward and reverse operations, etc., the impact can be mitigated by installing rubber bushing between the torque arm and the mounting bolt (or spacer).

Adjust the amount of the space to a size that does not result in excessive force or contact in accordance with the movement of the machine.

Good example

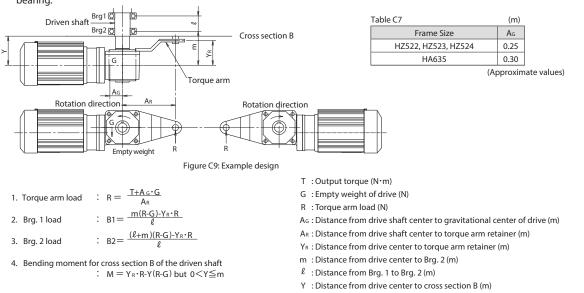
Torque arm and machine-side base fixed (adhered) with no freedom of motion

The retainer bolt, machine or the product may be damaged due to excessive force.

Bad example

Table C6 Hexagon socket head bolt size

Frame Size	Bolt size
HZ522, HZ523, HZ524	M12
HA635	M20


C12

Design example of the torque arm

The torque arm is prepared by the customer. The designing procedure of the torque arm is shown below. Meanwhile, for applications in which continuous operation and starting/stopping are infrequent, there is an optional torque arm. See page C14 for details.

1. Calculation method of the strength check of the torque arm

Please refer to the following figures and formulas, and check the strength of the torque arm and driven shaft, and the service life of the bearing.

Note: Change + to - if the rotation direction of the output torque is opposite from that shown above.

2. Recommended dimensions of the torque arm

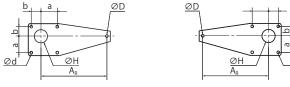
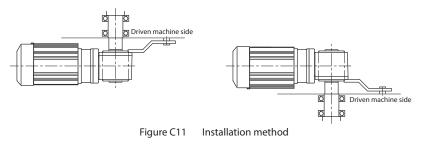



Figure C10 Recommended dimensions Table C8 Recommended dimensions

Frame size	Torque arm length	Torque arm bore diameter	Bore diameter of the torque arm locking part.		ue arm mounti	51	Torque arm mounting bore diameter	Torque arm plate thickness
	A _R	ØН	ØD	а	b	с	Ød	unickness
HZ522								
HZ523	150	112	22	80	70	_	14	9
HZ524								
HA635	280	152	22	145	85	-	22	12

Notes: 1. Attach the torque arm to the driven machine side.

2. The torque arm is mountable on either the left or right side of the case flange surface.

3. When mounting on the motor side, beware of interference with the motor.

BIBUS

Torque arm option

- There is an optional torque arm. This can be used if continuous operation, and starting and stopping are infrequent.
- It cannot be mounted on the motor side from the output shaft (hollow shaft).
- When preparing the torque arm on your own, if starting and stopping is frequent, or if mounting the torque arm on the motor side, please refer to page C13 while carrying out the design.

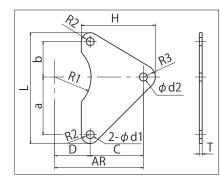


Figure C12 Torque arm

Table C9 Dimension table

Frame size	а	b	С	D	Н	L	d1	d2	R1	R2	R3	Т
HZ522 HZ523 HZ524	80	70	80	-	127	178	Ø 14	Ø 22	-	14	33	9
HA635	145	85	195	85	250	274	Ø 22	Ø 22	80	22	33	12

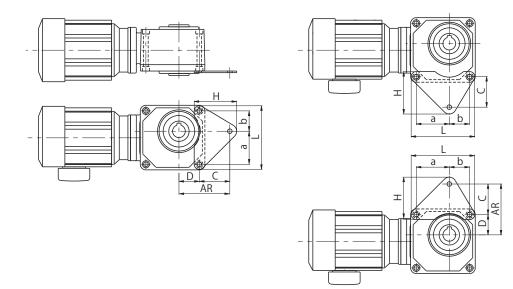
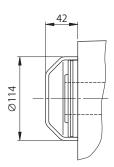


Figure C13 Installation example

Notes: 1. Please use the torque arm only for the locking function.


2. Please use the driven shaft to affix the drive in the axial direction.

Output shaft (hollow shaft) handling document

Safety cover of the output shaft

One safety cover made of resin is attached. Mounting on either the left or right side is possible.

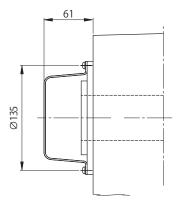


Figure C14 Safety cover (for HZ522, HZ523 and HZ524)

Figure C15 Safety cover (for HA635)

Shrink disk (optional)

Design recommendation example

- 1. Designing the driven shaft
- When ordering the product, the mounting direction of the shrink disk must always be specified. (See Table C12) The mounting direction of the shrink disk cannot be changed after delivery.
- Please design the driven shaft with reference to Dimension Table C10.
- 2. Installation of the shrink disk
- Since the shrink disk is attached to the drive main unit, in a state in which grease is applied to the surface that tightens the boss when shipped, assembly can be carried out as is.

Inserts that are stuffed between the two plates in transit can be removed by loosening all bolts.

When removing the shrink disk that has been used so far and reusing it, first disassemble and wash it. Then, apply molybdenum disulfide grease to the surface that will come into contact with the sliding cone, tightening bolt, and its bolt head.

- (1) Completely degrease the boss hole and the shaft that comes into contact with it.
- (2) Slide the shrink disk onto the output shaft (hollow shaft). Do not tighten the tightening bolts until the driven shaft is inside the output shaft (hollow shaft).
- (3) Slide the driven shaft or drive, then insert the driven shaft into the output shaft (hollow shaft).
- (4) When tightening the bolts, ensure the surfaces of both plates are parallel. A spanner with a short handle is suitable for this task.
- (5) After confirming that the shrink disk is properly set, start tightening the tightening bolts using a spanner with a suitable length.

Tighten the bolts clock-wise (not diagonally), uniformly, and in order, while keeping both plates parallel. Tightening each bolt 30 degrees at a time is recommended when doing this.

- (6) Always check the shrink disk after tightening using a torque wrench. The specified torque is indicated on the nameplate of the shrink disk.
- (7) Finally, check if both plates are parallel.
- Note) Operate after installing the shrink disks by the procedure described above. There is no lubrication on the contact portion of the output shaft (hollow shaft) and the drive shaft. Therefore, scratches and galling will occur on the shaft if it is rotated without being correctly installed.

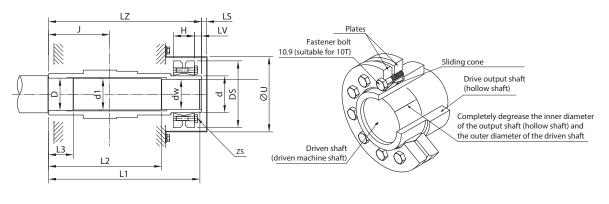


Figure C16 Shrink disk system Output shaft (hollow shaft) dimensions

Figure C17

Shrink disk structure

3. Removing the shrink disk

- Carry out the removal of the shrink disks in the opposite order of the installation procedure.
- Loosen the bolts gradually and in order, so that the two plates do not tilt on the sliding cone.
- Never remove the bolts if the two plates are not parallel. Both plates may suddenly fly out of the sliding cone and injury is possible. Accordingly, slightly loosen all bolts and insert wedges between the plates to achieve a parallel state.

Output shaft (hollow shaft) handling document

				Shrink d	isk			Output shaft (hollow shaft)						
Frame					٦	Fightening bolt					Safety cover			
size	Nomenclature	ture d DS H		Н	ZS	Strength Classification	TA N∙m	J	LZ	LV	LS	U		
HZ522 HZ523 HZ524	S-45×55	55	100	30	M6	10.9	11.8	78	196	5	18	115		
HA635	S-55×68	68	115	30	M6	10.9	11.8	112	264	5	31	152		

Table C10Shrink disk design reference dimensions

Frame	Driven	shaft (F	Recomme	nded des	ign dimen	sions)
size	dw	d1	D	L1	L2	L3
HZ522 HZ523 HZ524	45h6	44.5	45h6	193	140	55
HA635	55h6	54.5	55h6	261	200	65

Table C11 Specified tightening torque of the tightening bolt

Strength class	JIS 10.9
Tightening torque (N·m)	11.8

 Table C12
 Shrink disk installation position specifying code

Shrink disk installation posit	ion	Specifying code
Seen from the motor side	Right	R61
Seen from the motor side	Left	R62

Domestic specification motor

Table C13

Premium-efficiency, 3-phase motor (200V class)

	Number of Poles											4P										
Motor frame size	Power source			1	200V-50F	łz					2	200V-60H	z					2	20V-60H			
Sile	Output (kW)	Rated current (A)	fficiency (%)	IE code	Stall torque (%)	Starting torque (%)	Starting current (A)	Speed (r/min)	Rated current (A)	Efficiency (%)	IE code	Stall torque (%)	Starting torque (%)	Starting current (A)	Speed (r/min)	Rated current (A)	Efficiency (%)	IE code	Stall torque (%)	Starting torque (%)	Starting current (A)	Speed (r/min)
N-100L	2.2	10.4	88.7	IE3	465	382	83.0	1450	9.32	89.8	IE3	402	297	74.9	1740	9.08	90.2	IE3	500	380	83.6	1750
N-1125	3.0	13.6	87.9	IE3	419	352	98.9	1440	12.3	89.5	IE3	358	282	91.0	1730	11.8	89.7	IE3	452	368	101	1740
N-112M	3.7	16.6	89.0	IE3	420	294	127	1460	15.0	90.1	IE3	370	243	115	1750	14.5	90.6	IE3	452	300	126	1760
N-132S	5.5	24.4	90.6	IE3	524	351	229	1460	21.8	91.7	IE3	440	286	196	1760	21.2	91.9	IE3	542	355	217	1770
N-132M	7.5	33.5	91.2	IE3	350	236	206	1460	30.0	91.8	IE3	286	199	176	1760	29.0	92.0	IE3	356	244	195	1770
N-160M	11	49.8	91.5	IE3	378	257	316	1470	43.2	92.5	IE3	308	210	268	1760	42.4	92.6	IE3	387	262	299	1770

Table C14 Premium-efficiency, 3-phase motor (400V class)

	Number of Poles											4P										
Motor frame size	Power				00V-50H						2	100V-60H	Iz					4	40V-60H	z		
3120	Output (kW)	Rated current E (A)	fficiency (%)	IE code	Stall torque (%)	Starting torque (%)	Starting current (A)	Speed (r/min)	Rated current (A)	Efficiency (%)	IE code	Stall torque (%)	Starting torque (%)	Starting current (A)	Speed (r/min)	Rated current (A)	Efficiency (%)	IE code	Stall torque (%)	Starting torque (%)	Starting current (A)	Speed (r/min)
N-100L	2.2	5.20	88.7	IE3	465	382	41.5	1450	4.66	89.8	IE3	402	297	37.5	1740	4.54	90.2	IE3	500	380	41.8	1750
N-1125	3.0	6.80	87.9	IE3	419	352	49.5	1440	6.15	89.5	IE3	358	282	45.5	1730	5.90	89.7	IE3	452	368	50.7	1740
N-112M	3.7	8.30	89.0	IE3	420	294	63.6	1460	7.50	90.1	IE3	370	243	57.3	1750	7.25	90.6	IE3	452	300	63.0	1760
N-132S	5.5	12.2	90.6	IE3	524	351	114	1460	10.9	91.7	IE3	440	286	98.1	1760	10.6	91.9	IE3	542	355	109	1770
N-132M	7.5	16.8	91.2	IE3	350	236	103	1460	15.0	91.8	IE3	286	199	87.9	1760	14.5	92.0	IE3	356	244	97.7	1770
N-160M	11	24.9	91.5	IE3	378	257	158	1470	21.6	92.5	IE3	308	210	134	1760	21.2	92.6	IE3	387	262	149	1770

Note) 1. The characteristics of brakemotors are the same.

2. For brake characteristics, see page C27.

3. The figures of this table may be changed without notice.

	Number of Poles						4	1P					
Motor frame size	Power source			200V	-60Hz					220V-	-60Hz		
3126	Output (kW)	Frequency (Hz)	Voltage (V)	Rated current (A)	Speed (r/min)	Efficiency (%)	IE Code	Frequency (Hz)	Voltage (V)	Rated current (A)	Speed (r/min)	Efficiency (%)	IE code
N-100L	2.2	60	200	8.96	1750	89.8	IE3	60	220	8.66	1760	90.2	IE3
IN-TOOL	2.2	6	31	8.68	135	_	_	6	31	8.68	135	-	-
N-112M	3.7	60	200	14.3	1760	90.1	IE3	60	220	13.8	1770	90.6	IE3
IN-112IVI	3./	6	32	13.8	145	_	_	6	32	13.8	145	-	-
N-1325	5.5	60	200	20.9	1765	91.7	IE3	60	220	20.1	1775	91.9	IE3
IN-1325	5.5	6	28	20.2	155	—	_	6	27	19.9	155	_	-
N 122M	7.5	60	200	28.8	1770	91.8	IE3	60	220	27.7	1775	92.0	IE3
N-132M	7.5	6	29	28.5	145	—	_	6	30	27.5	150	_	-
NI 1COM	11	60	200	42.0	1770	92.5	IE3	60	220	40.6	1775	92.6	IE3
N-160M	11	6	29	41.5	150	_	_	6	29	41.5	150	-	-

Table C15 Premium-efficiency, 3-phase motor for inverter (200V class)

Table C16	Premium-efficiency, 3-phase motor for inverter (400V class)
-----------	---

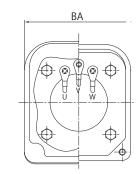
	Number of Poles						2	1P					
Motor frame size	Power source			400V-	-60Hz					440V-	-60Hz		
3120	Output (kW)	Frequency (Hz)	Voltage (V)	Rated current (A)	Speed (r/min)	Efficiency (%)	IE Code	Frequency (Hz)	Voltage (V)	Rated current (A)	Speed (r/min)	Efficiency (%)	IE code
N-100L	2.2	60	400	4.48	1750	89.8	IE3	60	440	4.33	1760	90.2	IE3
IN-TOOL	2.2	6	62	4.34	135	—	_	6	62	4.34	135	-	-
N-112M	3.7	60	400	7.16	1760	90.1	IE3	60	440	6.90	1770	90.6	IE3
11-112/01	5.7	6	63	6.89	145	_	_	6	63	6.89	145	-	-
N-1325	5.5	60	400	10.4	1765	91.7	IE3	60	440	10.1	1775	91.9	IE3
IN-1325	5.5	6	55	10.1	155	_	_	6	54	9.97	155	_	-
N 122M	75	60	400	14.4	1770	91.8	IE3	60	440	13.8	1775	92.0	IE3
N-132M	7.5	6	57	14.2	145	_	_	6	59	13.8	150	_	-
N 100M	11	60	400	21.0	1770	92.5	IE3	60	440	20.3	1775	92.6	IE3
N-160M		6	59	20.8	150	-	-	6	59	20.8	150	-	-

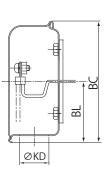
Notes: 1. For efficiency and IE codes, the characteristics when operating with a commercial power source are shown.

2. The characteristics of the motors with brake are the same.

3. For brake characteristics, see page C27.

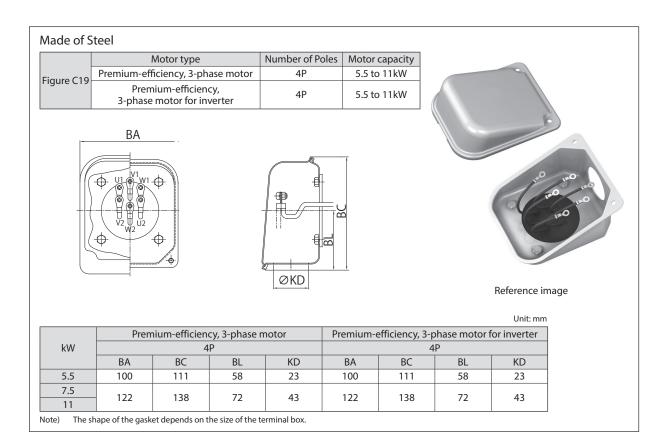
4. The values in this table may be changed without notice.



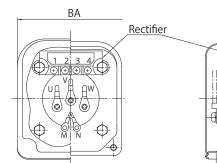

BIBUS s.r.o. +420 547 125 300 www.bibus.cz

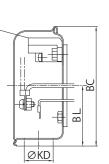
C19

Indoor motor (without brake)


Made of S	Made of Steel										
	Motor type	Number of Poles	Motor capacity								
Figure C18	Premium-efficiency, 3-phase motor	4P	2.2 to 3.7kW								
	Premium-efficiency, 3-phase motor for inverter	4P	2.2 to 3.7kW								

	Prem	ium-efficien	cy, 3-phase m	notor	Premium-efficiency, 3-phase motor for inverter			
kW		4	Р		4P			
	BA	BC	BL	KD	BA	BC	BL	KD
2.2					100	111	58	23
3.0	100	111	58	23	-	-	-	-
3.7					100	111	58	23

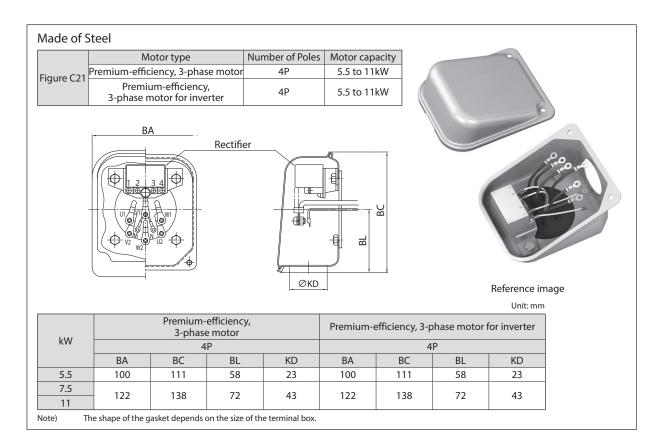




Indoor motor (with brake)

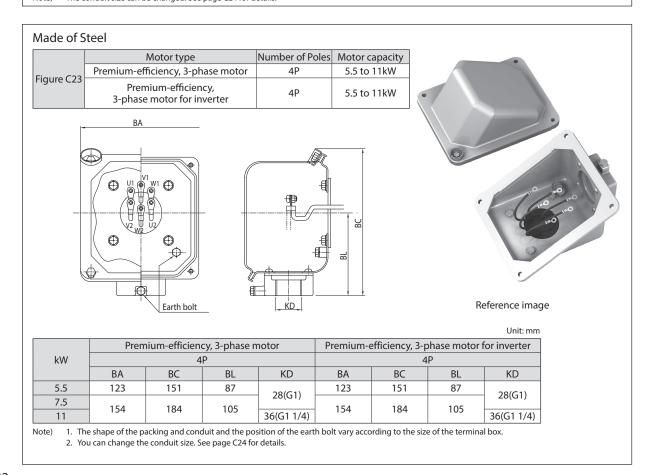
Made of Steel

	Motor type	Number of Poles	Motor capacity
Figure C20	Premium-efficiency, 3-phase motor	4P	2.2 to 3.7kW
	Premium-efficiency, 3-phase motor for inverter	4P	2.2 to 3.7kW



Reference image

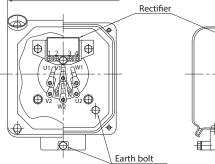
								Unit. Initi	
	Prem	nium-efficien	cy, 3-phase m	notor	Premium-efficiency, 3-phase motor for inverter				
kW		4	Р		4P				
	BA	BC	BL	KD	BA	BC	BL	KD	
2.2					100	111	58	23	
3.0	100	111	58	23	-	-	-	-	
3.7					100	111	58	23	


Outdoor motor (without brake)

Made	of Steel	
------	----------	--

Made of S	Steel		
	Motor type	Number of Poles	Motor capacity
Figure C22	Premium-efficiency, 3-phase motor	4P	2.2 to 3.7kW
	Premium-efficiency, 3-phase motor for inverter	4P	2.2 to 3.7kW
_	BA		

	Prem	nium-efficien	cy, 3-phase n	notor	Premium-efficiency, 3-phase motor for inverter						
kW		4	P		4P						
	BA	BC	BL	KD	BA	BC	BL	KD			
2.2					123	151	87	22(G3/4)			
3.0	123	151	87	22(G3/4)	-	-	-	-			
3.7					123	151	87	22(G3/4)			
Note) The co	Note) The conduit size can be changed. See page C24 for details.										



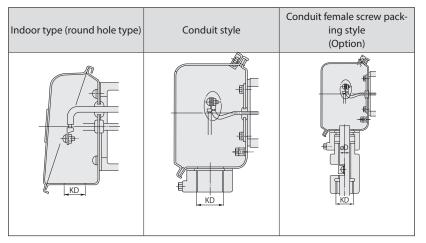
Outdoor motor (with brake)

Made of Steel

Made of	Steel											
		Motor typ)e	Numbe of Pole		apacity		-				
Figure C24	Premium	n-efficiency, 3	-phase motor	4P	2.2 to	3.7kW	•					
5	P	Premium-effic hase motor fo		4P	2.2 to	3.7kW		7	-			
	BA								C			
	Rectifier											
								Unit: mm				
	Pren		cy, 3-phase mot	or	Premium-e	efficiency	, 3-phase motor	for inverter				
kW			.P	KD	DA	DC	4P	KD				
2.2	BA	BC	BL	KD	BA 123	BC 151	BL 87	KD 22(G3/4)				
3.0	123	151	87	22(G3/4)	-	-		22(05/4)				
3.7	125	151	07	22(03/4)	123	151	87	22(G3/4)				
	conduit size can b	be changed. See	page C24 for deta	ls.				()				
Made of	Steel											
Figure	Motor type Number of Poles Motor capacity											
Figure C25			phase motor	4P	5.5 to 1	1kW	•					
		emium-effici ase motor for		4P	5.5 to 1	1kW						
1-	BA								r			
-			Rectifier									

Reference image

Unit: m


	Prem	nium-efficien	cy, 3-phase n	notor	Premium-efficiency, 3-phase motor for inverter				
kW		4	·P		4P				
	BA	BC	BL	KD	BA	BC	BL	KD	
5.5	123	151	87	29(C1)	123	151	87	29(C1)	
7.5	154	184	105	20(GT)	28(G1) 36(G1 1/4) 154	184	105	28(G1)	
11	154	104	105	36(G1 1/4)				36(G1 1/4)	

KD,

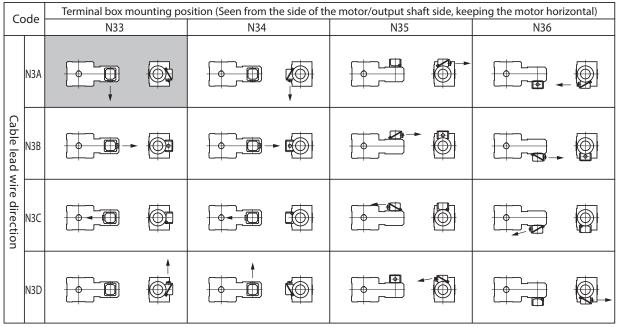
2. You can change the conduit size. See page C24 for details.

Terminal box port list

Motor Cap	oacity (kW)	Indoor	Outdoor type, stormproof outdoor type, coastal installation type, 2-type anti-corrosion type, dust-proof type							
4	4P Round h type			uit style	Conduit female screw packing style (option)					
Premium- efficiency,		Cable port standard dimensions	Standard dimensions	Manufacturable range	Standard	dimensions	Manufactu	ufacturable range		
3-phase motor	3-phase motor for inverter	KD	Conduit size KD	Conduit size KD	Conduit size KD	Cable diameter ØD	Conduit size KD	Cable diameter ⊘D		
2.2	2.2				22(G3/4)	12.5				
3.0	-	Ø23	22(G3/4)	22(G3/4)	16(G1/2) 22(G3/4)			22(G3/4)	10.0-16.5 12.0-19.5	
3.7	3.7	023		28(G1) 36(G1 1/4)	14.5 28(G1)	14.5	28(G1) 36(G1 1/4)	15.5-23.5		
5.5	5.5		28(G1)							
7.5	7.5	Ø43	20(01)	22(G3/4) 28(G1)		17.5	22(G3/4) 28(G1)	12.0-16.5 12.0-18.7		
11	11	₩43	36(G1 1/4)	36(G1 1/4) 42(G1 1/2)	36(G1 1/4)	19.5	36(G1 1/4) 42(G1 1/2)	15.5-22.7 17.5-27.0		

Note) When not specified, production will be carried out with standard dimensions.

C24



Terminal box installation position, cable lead wire direction

The terminal box installation position of the motor and the cable lead wire direction can be selected in 90 degree pitches from the standard installation position and direction.

Specify at the time of ordering according to the diagram below.

(The terminal box installation position cannot be changed after shipment. Always specify at the time of ordering.)

: Standard specification

 \downarrow : Cable port

Dimensions of the terminal box installation position

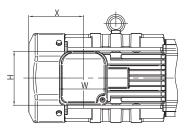
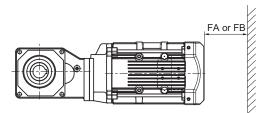


Table C17 List of dimensions of the terminal box installation position

Motor		Premiu	ım-efficien	cy, 3-phase	phase motor Premium-efficiency, 3-phase motor for inverter						er	
(kW)	Indoor type without brake			Indoor type with brake			Indoor type without brake			Indoor type with brake		
4P	Х	W	Н	Х	W	Н	Х	W	Н	Х	W	Н
2.2	115	100	111	193	100	111	115	100	111	193	100	111
3.0	115	100	111	193	100	111	-	-	-	-	-	-
3.7	118	100	111	193	100	111	118	100	111	193	100	111
5.5	118	100	111	208	100	111	118	100	111	208	100	111
7.5	138	122	138	243	122	138	138	122	138	243	122	138
11	138	122	138	243	122	138	138	122	138	243	122	138

Details of motor fan cover installation


When designing the mounting space of the gear motor, consider the FA or FB dimensions of the following table.

(1) FA dimensions: Necessary dimensions in order to remove the fan cover or brake cover when attached to the device.

(2) FB dimensions: Minimum necessary space considering ventilation.

Notes: 1. When removing the fan or brake cover, the gearmotor must be removed from the device.

2. This is the minimum space with the back wall of the motor fan enclosed.

Table C18 FA and FB dimension list

Motor	Pr	emium-efficien	cy, 3-phase mot	or	Premium-efficiency, 3-phase motor for inverter				
(kW)	Indoor type v	vithout brake	Indoor type	e with brake	Indoor type v	vithout brake	Indoor type with brake		
4P	FA	FB	FA	FB	FA	FB	FA	FB	
2.2	60	20	138	20	60	20	138	20	
3.0	60	20	138	20	-	-	-	-	
3.7	63	25	153	25	63	25	153	25	
5.5	63	25	153	25	63	25	153	25	
7.5	84	30	189	30	84	30	189	30	
11	84	30	189	30	84	30	189	30	

Motor brake specifications

	Table C19	Electromagnetic k	orake specifications	and applicable motors
--	-----------	-------------------	----------------------	-----------------------

4-Pole motor

	Motor o	tor capacity Brake Operating delay time when b				en braking (s)				Ga	р	
Brake type	Premium efficiency, 3-phase motor (kW)	Premium efficiency, 3-phase motor for inverter (kW)	Torque (Dynamic friction torque) (N•m)	Normal braking circuit (Simultaneous turn-off circuit)	Normal braking circuit for inverter (Separate turn- off circuit)	Quick- braking circuit	Allowable work volume E ₀ (J/min)	Workload until gap modification (x 10 ⁷ J)	Total work volume E ₁ (x 10 ⁷ J)	Required value (original value) (mm)	Limit value (mm)	Construction drawing
FB-3E	2.2	2.2	22	0.75 - 0.95	0.4 - 0.5		5720	26.3	105.3	0.25 - 0.35	0.85	Figures C31
FB-4E	3.0	-	30	0.65 - 0.85	0.3 - 0.4		3720	20.5	105.5	0.25-0.35	0.05	and C34
FB-5E	3.7	3.7	40	1.1 - 1.3	0.4 - 0.5	0.02 - 0.04	6900	57.4	382.8	- 0.35 - 0.45	1.0	Figures C32
FB-8E	5.5	5.5	55	1.0 - 1.2	0.3 - 0.4	0.02 - 0.04	0900	57.4	382.8			and C35
FB-10E	7.5	7.5	80	1.8 - 2.0	0.6 - 0.7		10800	110.2	551.1		1.2	Figures C33
FB-15E	11	11	110	1.6 - 1.8	0.5 - 0.6		10800	110.2	551.1			and C36

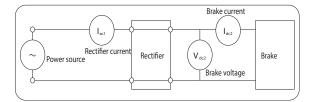
- This table shows the case of a standard specification brake. The specification of the special specification brake may be different from this table.

- Please beware that the FB-E brake differs in operation delay time from brakes produced until now (FB-B, FB-B1, and FB-D brakes).

- Brake torque may not be at the prescribed level during initial operation due to the friction surface. In such a case turn the brake on and off under as light load as possible to contact the brake's friction surfaces.

Use a quick-braking circuit to improve hoisting equipment and stopping precision.

- Use a quick braking circuit if you install a phase-advancing capacitor to a motor with brake which operates with 3-phase power source.


- Due to the brake structure, a rubbing sound of the lining may occur during motor operation, but there is no problem with the performance of the brake.

- Due to the brake structure, the noise from the brake may get bigger during inverter operation, but there is no problem with the performance of the brake.

- If the allowable work volume E₀ is exceeded, the brake may become unusable (braking defect). Upon referencing page B11, Table B5, confirm that the braking workload is equal to or less than the allowable workload E₀. (Also confirm it for emergency stopping.)

Table C20 Current value of the brake

	AC	200V/50, 60H	Ηz		AC220V/60Hz	2	AC	C400V/50, 60H	Ηz	AC440V/60Hz			
вгаке туре	Brake voltage V _{dc2} (V)	Brake current I _{dc2} (A)	Rectifier current I _{ac1} (A)	Brake voltage V _{dc2} (V)	Brake current I _{dc2} (A)	Rectifier current I _{ac1} (A)	Brake voltage V _{dc2} (V)	Brake current I _{dc2} (A)	Rectifier current I _{ac1} (A)	Brake voltage V _{dc2} (V)	Brake current I _{dc2} (A)	Rectifier current I _{ac1} (A)	
FB-3E FB-4E		0.6	0.5		0.6	0.5		0.3	0.2		0.3	0.3	
FB-8E FB-8E	DC90	0.9	0.7	DC99	1.0	0.8	DC180	0.5	0.4	DC198	0.5	0.4	
FB-10E FB-15E	1.1	0.8		1.2	0.9		0.6	0.4		0.6	0.5		

Points to Note when Using a Quick Braking Circuit

When using brakes with quick braking circuits, take note of the following items.

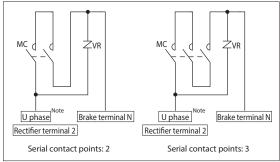
- Connect a varistor (protection element) to protect the quick braking circuit contact points from surge voltage generated by the brake action.
- Wire the quick braking circuit contact points to the brake power source secondary side contacts. Contact points might not be protected.
- For information on using an alternating current (AC) electromagnetic contactor with contact points for quick braking circuits, see Table C21.

If multiple contact points are required, note the following issues.

- Connect electromagnetic contactor contact points in serial.
- Connect the varistor (VR) as close to the unit as possible.

Table C21 Recommended part type when using a quick braking circuit (when using an AC electromagnetic contactor)

			Recommended	contact	or type	Recor	mmended	Recomm (For Protecting Co	ended Varis ntactor Con)
AC voltage	Brake type	Compo	y Fuji Electric FA nents & Systems Co., Ltd.		by Mitsubishi c Corporation	contac point	tor contact t capacity -13 class)	Varistor type	Maximum Allowable Circuit Voltage	Varistor voltage	Power rating
	FB-3E	SC-05	Serial contact	S-N11 or	Serial contact		Minimum				
	FB-4E	SC-05	SC-05 points: 2 (3.0A)		(3.0A)	points: 2 (3.0A)		TND14V-471KB00AAA0	AC300V	470V (423–	0.6W
200V 220V	FB-5E	Serial contactors SC-05 points: 3		S-N18	Serial contact 8 points: 3 DC		Minimum	IND140-47 IND00AAA0			0.000
	FB-8E	30-05	(4.0A)	5-1410	(5.0A)	110V	3.0A			517V)	
	FB-10E	SC-5-1	Serial contact points: 3	S-N20 or	Serial contact points: 3		Minimum	TND20V-471KB00AAA0			1.0W
	FB-15E	30-3-1	(10A)	S-N21	(10A)		5.5A	IND201-47 IND00AAA0			1.000
	FB-3E				Serial contact points: 3		Minimum				
	FB-4E	SC-05	Serial contact points: 3	or S-N12	(2.0A)		1.0A				
400V	FB-5E		(2.0A)	S-N18	Serial contact points: 3	DC	Minimum	TND20V-821KB00AAA0	AC510V	820V	1.0W
440V	FB-8E			5-1410	(2.0A)	220V	1.5A	1ND200-821KB00AAA0	AC510V	(738– 902V)	
	FB-10E				Serial contact points: 3		Minimum				
	FB-15E		-	or S-N21	(4.0A)		3.0A				


- The recommended contactor types are made by Fuji Electric Instrument Control Co., Ltd. and Mitsubishi Electric Corporation, or those by another company, as long as it has a similar capacity.

- A case in which the electrical opening and closing durability (lifetime) is 2 million times is shown as the recommended contactor contact point capacity.

- Among the recommended contactors, S-N11 made by Mitsubishi Electric Corporation has one auxiliary contact, and S-N18 has no auxiliary contact. This applies if, for inverter drive or other reasons, two or more auxiliary contact points are required. (The other contactors listed in Table C21 have two or more auxiliary contacts)

The recommended varistor type is made by Nippon Chemi-Con Corporation, or those by another company, as long as it has similar specifications.

Examples of Contact Point Connections with Quick-Braking Circuits

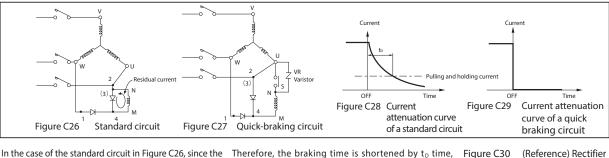
Note: For inverter drives, connect to the R phase.

internal circuit

4

(3)

diagram


1

2

(kgf · m)

Reason why the quick braking circuit shortens the braking time

The differences between a normal braking circuit (standard circuit) and a quick braking circuit are shown in Figures C26 and C27. Figures C28 and C29 show the conditions of current decay in a normal braking circuit (standard circuit) and a quick braking circuit.

In the case of the standard circuit in Figure C26, since the brake coil is inductance L, residual current will flow even when the power set to OFF, due to the energy stored in . The decay curve of this residual current is shown in Figure C28. In the case of connection to the quick braking circuit in

which realizes quick braking. In other words, the quick braking circuit is a circuit not to apply residual current by turning on and off the brake coil when turning on and off the power. (Be sure to use the VR varistor to protect the rectifier and

contact point S.)

[Gravity unit system] $\mathsf{E}_{\mathsf{p}} = \frac{(\mathsf{GD}_{\mathsf{L}}^2 + \mathsf{GD}_{\mathsf{M}}^2) \cdot \mathsf{N}^2}{\mathsf{M}^2} \times$

7150

Figure C27, if S is opened when turning off the power, there will be no closed circuit for the brake coil, so the residual current will not flow, as shown in Figure C29.

Calculation of the braking work volume and braking time

\bigcirc Braking work volume E_{B} (J, kgf·m)

The braking work volume by the brake varies greatly according to the speed of the motor and load conditions. The braking work volume can be calculated by the following formula

[SI unit system]

$$\mathsf{E}_{\mathsf{B}} = \frac{(\mathsf{J}_{\mathsf{L}} + \mathsf{J}_{\mathsf{M}}) \cdot \mathsf{N}^{2}}{182} \times \frac{\mathsf{T}_{\mathsf{B}}}{\mathsf{T}_{\mathsf{B}} \pm \mathsf{T}_{\mathsf{B}}} \qquad (\mathsf{J}$$

J₁ : Total inertia moment other than the motor with brake [motor shaft conversion] (ka-m²)

J_M: Inertia moment of a motor with brake (kg-m²)

N : Motor speed at the time of braking (r/min)

 T_{R} : Braking torgue (N·m)

T_R: Resistance torque of the load (N ⋅ m)

T_R symbol +: If the load torque functions as brake when the power is turned off (+ load)

-: If the load torque does not function as brake when the power is turned off (- load)

Calculate the work volume per minute from the braking work volume E_B and number of times of braking per minute (supplementary) and confirm that it is below the allowable work volume En

Also, if braking is applied by the brake after deceleration by the inverter, etc., consider the braking energy from high-speed rotation considering emergency stop due to outage, etc.

If the allowable work volume is exceeded, the brake may become unusable due to burn caused by abnormal heating of the brake friction surface, deformation and abnormal wear of the friction surface, reduction of the brake torque, damage of the lining, etc. The allowable brake work volume is used for confirmation of temperature rise of the brake friction surface. Also consider the starting and

stopping frequency of the gearmotor. Supplementary information) If the braking frequency is once every several months to several hours, calculate the work volume assuming the frequency as once a minute.

t_D

[Gravity unit system]

 $t_{_{B}} = \frac{(GD_{_{L}}^{2} + GD_{_{M}}^{2}) \times N}{375 \times (T_{_{B}} \pm T_{_{R}})} + t_{_{D}}$

 GD_{M}^{2} : GD^{2} of a motor with brake (kgf · m²) N: Motor speed at the time of braking (r/min)

 T_B : Braking torque (kgf·m) T_R : Resistance torque of the load (kgf·m)

: Operating delay time (s)

O Braking time t_B (s) The stop time by the brake can be calculated with the following formula.

(s)

$$t_{B} = \frac{(J_{L} + J_{M}) \times N}{9.55 \times (T_{B} \pm T_{R})} + t_{D}$$

 J_{L} : Total inertia moment other than the motor with brake [motor shaft conversion] (kg-m²) J_M: Inertia moment of a motor with brake (kg-m²)

N: Motor speed at the time of braking (r/min

 T_{R} : Braking torque (N·m)

T_p: Resistance torque of the load (N·m)

t_D: Operating delay time (s)

Note) Symbol of TR

+: If the load torque functions as brake (+ load) when turning the power OFF

-: If the load torgue does not function as brake when the power is turned off (- load)

◯ Lining life Z₁ (number of times)

The lining of the brake wears while using it. The wear of the lining varies greatly according to the surface pressure, sliding speed, ambient conditions, temperature, etc. so it is difficult to calculate the life correctly, but an approximate life can be calculated by the following formula:

$$Z_{L} = \frac{E_{t}}{E_{B}}$$
(times)
E;: Total work volume (J)

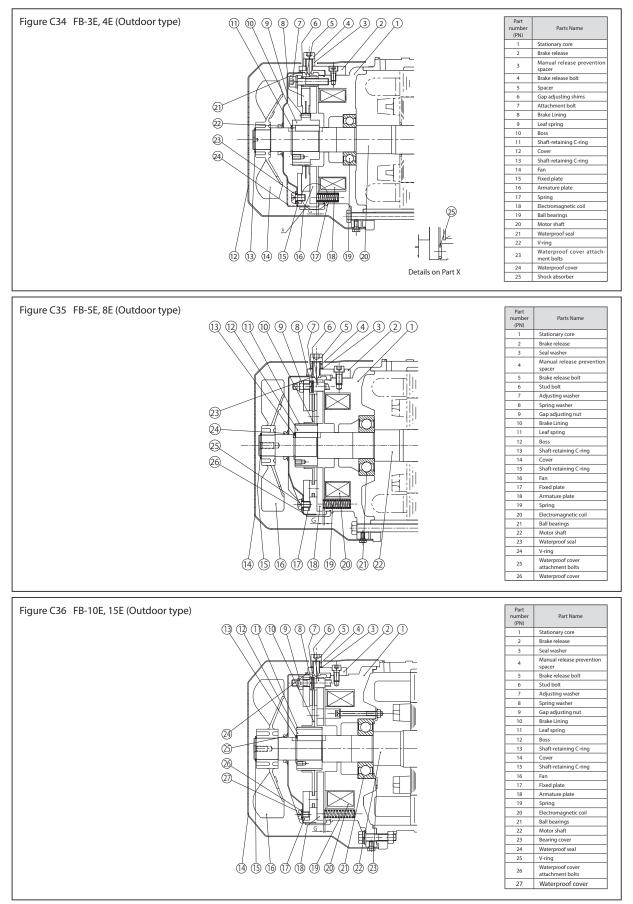
BIBUS

C29

 GD_{M}^{2} : GD^{2} of a motor with brake (kgf \cdot m²) N : Motor speed at the time of braking (r/min) T_B: Braking torque (kgf ⋅ m) T_R: Resistance torque of the load (kgf • m)

 $T_{R} \pm T_{R}$

GD²₁: Total GD² other than the motor with brake [motor shaft conversion] (kgf • m²)


(s)

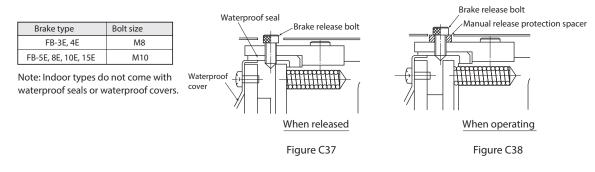
 GD_{L}^{2} : Total GD^{2} other than the motor with brake [motor shaft conversion] (kgf \cdot m²)

Motor brake structure Figure C31 FB-3E, 4E (Indoor type) Part number (PN) 11 10 9 8 7 6 5 4 3 2 1 Part Name Stationary core 1 2 Brake release ſ **#**1 Manual release 3 prevention spacer 4 Brake release bolt 5 Spacer Gap adjusting shims 6 Attachment bolt 8 Brake Lining 9 Leaf spring 10 Boss 11 Shaft-retaining C-ring R 12 Cover 13 Shaft-retaining C-ring 14 Fan (21) ilı HHMMM 15 Fixed plate 16 Armature plate \$ 17 Spring X 18 Electromagnetic coil Ball bearings 19 20 Motor shaft 13 14 15 16 Details on Part X (12) 17 18 19 20 21 Shock absorber Figure C32 FB-5E, 8E (Indoor type) Part umbe Part Name 13 12 11 10 9 8 7 6 5 4 3 2 1 (PN) 1 Stationary core 2 Brake release Seal washer 3 ΗN Manual release 4 Tilli prevention spacer Brake release bolt 目前 6 Stud bolt 7 Adjusting washer 8 Spring washer 9 Gap adjusting nut 10 Brake Lining 11 Leaf spring ₽ 12 Boss Ē 13 Shaft-retaining C-ring п 14 Cover Shaft-retaining C-ring 15 16 Fan G/ || 7 17 Fixed plate 18 Armature plate 19 Spring 20 Electromagnetic coil 14 15 16 17 18 19 20 21 22 21 Ball bearings 22 Motor shaft Figure C33 FB-10E, 15E (Indoor type) (1) (1) (1) (1) (9) (8) (7) (6) (5) (4) (3) (2) (1) Part Part Name umb (PN) 1 Stationary core 2 Brake release Ц 3 Seal washer Manual release 4 prevention spacer 5 Brake release bolt 6 Stud bolt E Ð Adjusting washer 8 Spring washe \mathcal{P} 9 Gap adjusting shims 10 Brake Lining Leaf spring 12 Boss ⇒ 13 Shaft-retaining C-ring 14 Cover 15 Shaft-retaining C-ring 16 Fan 17 п Fixed plate Armature plate 18 1 19 Spring G 20 Electromagnetic coil ₽ 21 Ball bearings 22 Motor shaft Bearing cover 23

BIBUS

C30

BIBUS s.r.o. +420 547 125 300 www.bibus.cz

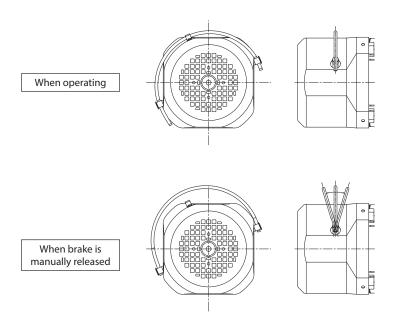

C31

Brake release device

To release the brake manually without turning the power on, operate the brake release device as follows.

Release bolt method

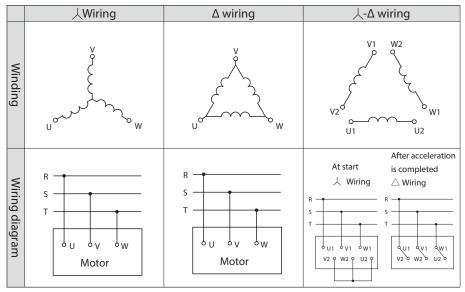
- (1) First remove the brake release bolts from the 2 opposing angles and remove the release prevention spacers. Reinsert the bolts and rotate with a hexagonal wrench to release the brake. Be careful not to over rotate the brake release bolts. (Rotate the brake release bolts while checking to see if the brake is released. (See Figures C37 and C38)
- (2) When returning the brake to its original state after releasing it, for safety's sake return the manual release prevention spacers that were removed in (1) to their original positions. (See Figure C38)
- (3) The size of the brake release bolt is as follows.



One touch release lever method (optional)

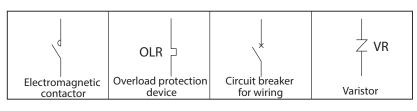
An optional brake releasing device can be installed for use with a one touch release lever method. This cannot be installed after shipment.Be sure to specify it at the time of order.

- Pull up the release leverfrom the holder and push it toward the load side or the anti-load side to release the brake.
 (Some specifications do not allow pushing the release lever toward the load side.)
- (2) Make sure not to push the release lever too far. Pushing the lever too far could damage the brake. (Push the release lever while checking to see if the brake is released.)
- (3) When the motor is operating, always return the release lever to its original position, and set it to the holder. Check if the brake is reliably functioning before starting operation.

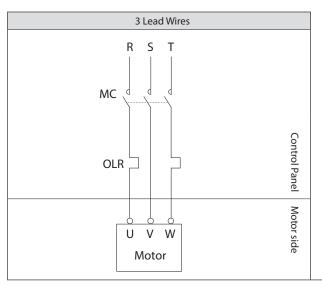

Note) The brake will be released while the lever is being pushed, but will be applied again when the lever is not being pushed.

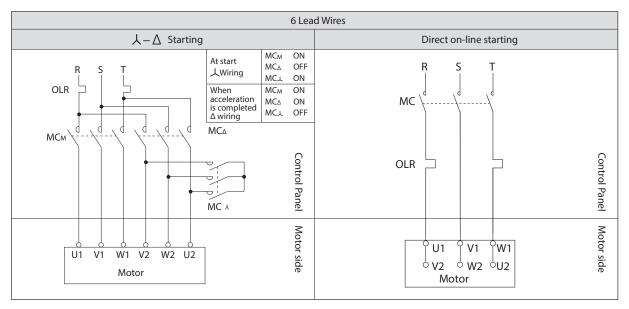
Motor Wiring

Motor type		Capacity	Wiring		
Premium-efficiency, 3-phase motor	4P	2.2 to 3.7kW 5.5 to 11kW	人Wiring 人-Δ wiring		
Premium-efficiency, 3-phase motor for inverter	4P	2.2 to 3.7kW 5.5 to 11kW	人Wiring Δ-wiring (人-Δ wiring)		


Note) 1. For details, see C34 to C41.

2. This figure is for motors with standard Japanese domestic specifications. Please consult with us for motors with overseas specifications.


C33

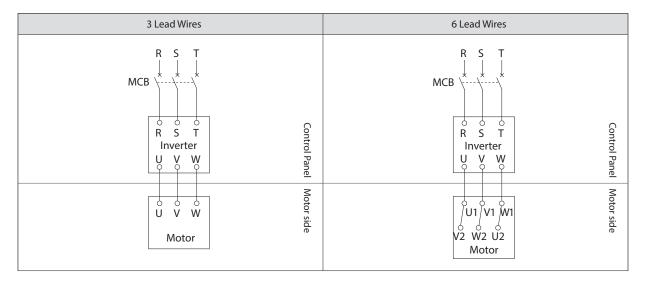

About wiring diagram symbols

Without brake. 3-phase power source

Premium-efficiency, 3-phase motor

MC: Electromagnetic contactor

OLR: Overload protection device or electronic thermal relay

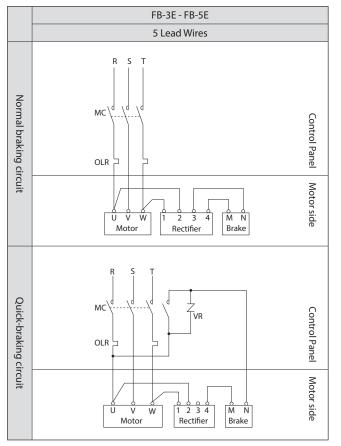

— Customer to prepare.

- This diagram shows motors with standard Japanese domestic specifications. Please consult with us for motors with overseas specifications.

Without brake. Inverter drive

Premium-efficiency, 3-phase motor Premium-efficiency, 3-phase motor for inverter

MCB: Circuit breaker for wiring --- To be prepared by the user.


- This diagram shows motors with standard Japanese domestic specifications. Please consult with us for motors with overseas specifications.

C35

With brake. 3-phase power source. Operates rotating in one direction.

Premium-efficiency, 3-phase motor

MC: Electromagnetic contactor

OLR: Overload protection device or electronic thermal relay — Customer to prepare.

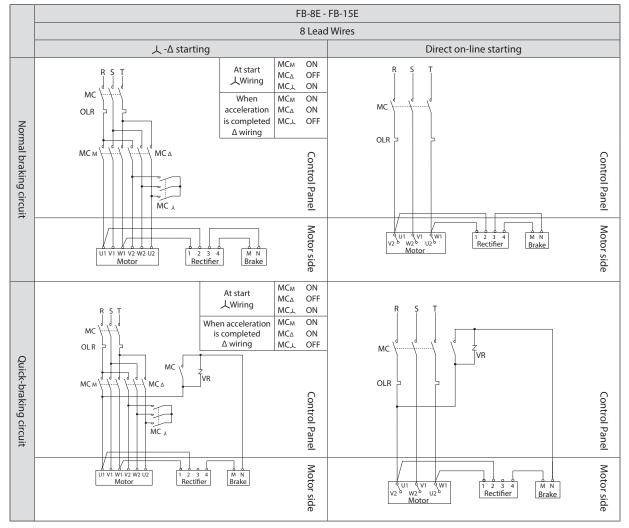
VR: Varistor (for protecting contact points, rectifier, etc.)

- This diagram shows motors with standard Japanese domestic specifications. Please consult with us for motors with overseas specifications.

- For brake types, see page C27, Table C17.

- Brake action delay time is different between normal and quick-braking circuits.

- Table C17 on page C27 shows the action delay period. Choose the circuit that matches the work requirements.
- Use a quick-braking circuit to improve hoisting equipment and stopping precision.
- Use a quick braking circuit if attaching a phase-advancing capacitor.


- For information on electromagnetic contactors and varistors for quick braking circuits, see Table C19 on page C28.

- For quick braking circuits, interlock the electromagnetic contactor of the brake circuit with the electromagnetic contactor of the motor.

With brake. 3-phase power source. Operates rotating in one direction.

Premium-efficiency, 3-phase motor

MC: Electromagnetic contactor

OLR: Overload protection device or electronic thermal relay — Customer to prepare.

VR: Varistor (for protecting contact points, rectifier, etc.)

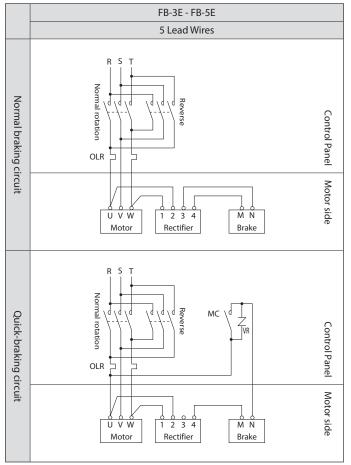
- This diagram shows motors with standard Japanese domestic specifications. Please consult with us for motors with overseas specifications.

- For brake types, see page C27, Table C17.

- Brake action delay time is different between normal and quick-braking circuits.

Table C17 on page C27 shows the action delay period. Choose the circuit that matches the work requirements.

- Use a quick-braking circuit to improve hoisting equipment and stopping precision.
- Use a quick braking circuit if attaching a phase-advancing capacitor.


- For information on electromagnetic contactors and varistors for quick braking circuits, see Table C19 on page C28.

- For quick braking circuits, interlock the electromagnetic contactor of the brake circuit with the electromagnetic contactor of the motor.

With brake. 3-phase power source. Plugging operation

Premium-efficiency, 3-phase motor

Electromagnetic contactor for normal and reverse rotation

- MC: Electromagnetic contactor
- OLR: Overload protection device or electronic thermal relay

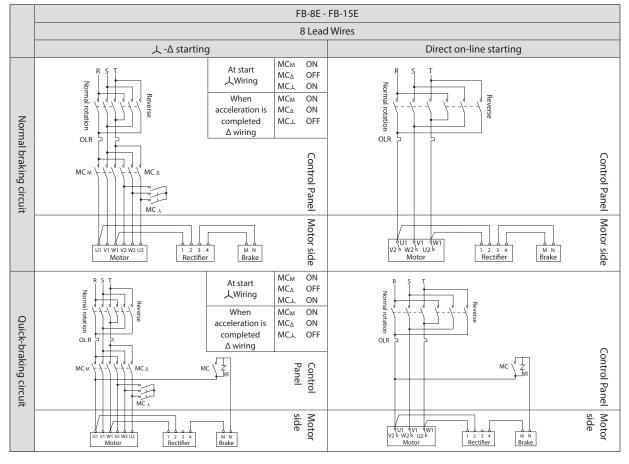
- Customer to prepare.

VR: Varistor (for protecting contact points, rectifier, etc.)

- This diagram shows motors with standard Japanese domestic specifications. Please consult with us for motors with overseas specifications.

- For brake types, see page C27, Table C17.

- Brake action delay time is different between normal and quick-braking circuits.


Table C17 on page C27 shows the action delay period. Choose the circuit that matches the work requirements.

- Use a quick-braking circuit to improve hoisting equipment and stopping precision.
- Use a quick braking circuit if attaching a phase-advancing capacitor.
- For information on electromagnetic contactors and varistors for quick braking circuits, see Table C19 on page C28.
- For plugging operations using a quick-braking circuit, gang the brake circuit's electromagnetic contactors to the motor's normal and reverse rotation electromagnetic contactors.

With brake. 3-phase power source. Both-direction operation

Premium-efficiency, 3-phase motor

Electromagnetic contactor for normal and reverse rotation

MC: Electromagnetic contactor

OLR: Overload protection device or electronic thermal relay

VR: Varistor (for protecting contact points, rectifier, etc.)

- This diagram shows motors with standard Japanese domestic specifications. Please consult with us for motors with overseas specifications.

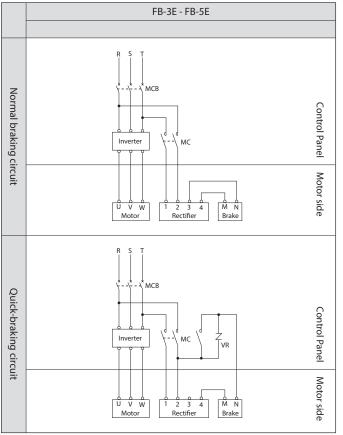
Customer to prepare.

- For brake types, see page C27, Table C17.

- Brake action delay time is different between normal and quick-braking circuits.

Table C17 on page C27 shows the action delay period. Choose the circuit that matches the work requirements.

- Use a quick-braking circuit to improve hoisting equipment and stopping precision.
- Use a quick braking circuit if attaching a phase-advancing capacitor.


- For information on electromagnetic contactors and varistors for quick braking circuits, see Table C19 on page C28.

- For plugging operations using a quick-braking circuit, gang the brake circuit's electromagnetic contactors to the motor's normal and reverse rotation electromagnetic contactors.

With Brake. Inverter Drive

Premium-efficiency, 3-phase motor Premium-efficiency, 3-phase motor for inverter

MC: Electromagnetic contactor

MCB: Breaker for wiring

VR: Varistor (for protecting contact points, rectifier, etc.)

- This diagram shows motors with standard Japanese domestic specifications. Please consult with us for motors with overseas specifications.

Customer to prepare.

- For brake types, see page C27, Table C17.

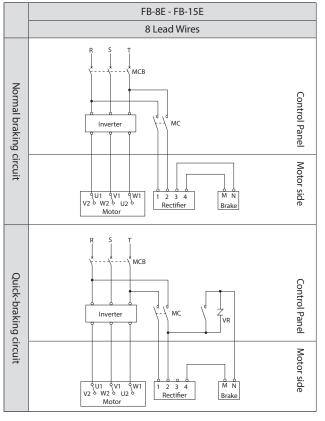
- Brake action delay time is different between normal and quick-braking circuits.

Table C17 on page C27 shows the action delay period. Choose the circuit that matches the work requirements.

- Use a quick-braking circuit to improve hoisting equipment and stopping precision.

- Use a quick braking circuit if attaching a phase-advancing capacitor.

- For information on electromagnetic contactors and varistors for quick braking circuits, see Table C19 on page C28.


- Always use the inverter's power source side for the brake power source.

- Sync the timing of the opening and closing of the electromagnetic contactor of the brake circuit with the controlling of the inverter.

With Brake. Inverter Drive

Premium-efficiency, 3-phase motor Premium-efficiency, 3-phase motor for inverter

MC: Electromagnetic contactor

MCB: Breaker for wiring

VR: Varistor (for protecting contact points, rectifier, etc.)

- This diagram shows motors with standard Japanese domestic specifications. Please consult with us for motors with overseas specifications.

Customer to prepare.

- For brake types, see page C27, Table C17.
- Brake action delay time is different between normal and quick-braking circuits.
 Table C17 on page C27 shows the action delay period. Choose the circuit that matches the work requirements.
- Use a quick-braking circuit to improve hoisting equipment and stopping precision.
- Use a quick braking circuit if attaching a phase-advancing capacitor.
- For information on electromagnetic contactors and varistors for quick braking circuits, see Table C19 on page C28.

- Always use the inverter's power source side for the brake power source.

- Sync the timing of the opening and closing of the electromagnetic contactor of the brake circuit with the controlling of the inverter.

First symbol - Protection type for human body and solid foreign materials Second symbol - Classified by the combination of the protection type for water ingress.

(JIS C 4034)

Protection type of the electric machine and our support

First symbol Second symbol First type name Second type name		2 Drip proof type	3 Rainproof type	4 Splash proof type	5 Water-jet resis- tant type	6 Waveproof type	7 Watertight type	8 Submersible type
0 (Non-protection type)	IP00			×	×	×	×	
1 (Semi protection type)	IP10	IP12S			×	×	×	
2 (Protection type)	IP20	IP22S	IP23S	IP24	×	×	×	
4 (Totally enclosed)	×			IP44	IP45			
5 (Dust-proof type)	×			IP54	IP55	IP56		
6 (Complete dust-proof type)	×				IP65			

Note) 1. * indicates what is difficult to combine.

2. I indicates the standard manufacturing range of Sumitomo.

3. In the case of direct exposure to strong wind and rain and frequent exposure to water, it may be necessary to consider the protection method, so please consult us.

4. The protection type on the standard motor, for both indoor and outdoor, is IP44. However, the structures differ between the indoor type and outdoor type, so please specify the outdoor type when installing outdoors.

Grade of the first symbol

Nomenclature	Symbol	Description
Non-protection type	0	Structure without special protection against contact with human body and intrusion of solid foreign materials.
Semi protection type	1	Structure to prevent large parts of human body such as hand from touching the rotation part or conductive part of the machine by mistake. Structure to prevent intrusion of solid foreign materials whose diameters exceeds 50mm.
Protection type	2	Structure to prevent fingers, etc. from touching the rotation part or conductive part of the machine. Structure to prevent intrusion of solid foreign materials over 12mm.
Totally enclosed	4	Structure to prevent objects whose minimum width or minimum depth is larger than 1mm such as tools and electric cables from touching the rotation part or conductive part of the machine. Structure to prevent intrusion of solid foreign materials over 1mm. However, the structures of drainage wells and inlets and outlets of the external fan can be that of symbol 2.
Dust-proof type	5	Structure to prevent any objects from touching the rotation part or conductive part of the machine. Structure to prevent intrusion of dust as mush as possible and prevent it from hindering the normal operation even in the event of intrusion.
Complete dust- proof type	6	Structure to prevent dust from intruding inside.

Grade of the second symbol

Nomenclature	Symbol	Description
Non-protection type	0	Structure without special protection against water ingress.
Drip proof type	2	Structure to prevent harmful effect of water droplets dropping at an angle from vertical to 15°.
Rainproof type	3	Structure to prevent harmful effect of water droplets dropping at an angle from vertical to 60°.
Splash proof type	4	Structure to prevent harmful influence of water droplets in any directions.
Water-jet resis- tant type	5	Structure to prevent harmful influence of jet in any directions.
Waveproof type	6	Structure to prevent harmful influence of strong jet in any directions.
Watertight type	7	Structure to prevent harmful effect even in the event of submersion in water at the specified water depth for the specified time and water ingress.
Submersible type	8	Structure to enable normal operation in water.

Example) IP S 4 S

W	
E	
C	ί

SM Protection type for water ingress: Splash proof type Protection type for human body and solid foreign materials: Dust-proof IEC - Abbreviation of the standard S - If the protection type test for water ingress is performed while the motor is stopped.
 M - Case that the protection type for water ingress is tested while the motor is in operation.
 Without S or M indication - Conduct the test while the motor is stopped and in operation.

W - Outdoor type (used only for the outdoor open type)

- E Explosion proof
- C Protection type for other harmful air

Cooling Type

Enclosure	JIS standard	IEC standard
Totally enclosed, naturally air-cooling type (TENV)	IC410	IC410
Totally enclosed fan cooled type (TEFC)	IC411	IC411
Totally enclosed ventilated type (TEAO)	IC416	IC416

Coating

In addition to the standard specification, the coating can be changed to those shown in Table C22, depending on the application.

Table C22 Coating specification

	Paint t	уре	Numl		Painting sp	pecification	Wea	Subme re:	Oil r	Acid	Alkalir	Therm.	
Degree of surface preparation	Classification	Paint type	Number of days of paint	Paint	Frequency total thickness (Total µm)	General name	Weatherproof	Submersible water resistance	Oil resistance	Acid resistance	Alkaline resistance	Thermal stability \wp	Use
	Standard paint	Phthalic acid type	0	Undercoat	1 Note) 7 (0 to 40)	Modified epoxy resin	0	×		0	×	100	Standard applications
		Prithalic acid type	0	Topcoat	1 (15 to 30)	Acrylic alkyd resin						100	Standard applications
	Export standard paint	Phthalic acid type	2	Undercoat	2 (30 to 60)	Modified epoxy resin	0	×		0	×	100	Mainly for export
			-	Topcoat	1 (15 to 30)	Acrylic alkyd resin		Â			Â	100	
Casting	Rustproof paint	Polyurethane	6	Undercoat	1 (20 to 40)	Modified epoxy resin			0			100	Moderately corrosive environment
Scraping Class 1		Folydrethane		Topcoat	2 (30 to 60)	Polyisocyanate-based urethane resin paint	0		0	0	0	100	Location in which there is steam
		Dharad	-	Undercoat	2 (40 to 70)	Rust preventive paint		×	^			100	Moderately corrosive environment
Steel plate/ Aluminum		Phenol	7	Topcoat	2 (30 to 60)	Phenol resin enamel	0	×	\triangle	0	0	100	Factories in which acid is used
Scraping Class 2		Francture	10	Undercoat	1 (50 to 60)	Special penetrating epoxy aluminum paint	*	0	0	0	0	150	Severely corrosive environment
		Epoxy type	10	Topcoat	3 (30 to 90)	Polyamide type epoxy resin	0		0			150	Factories in which acid is used
	Heavy rustproof paint			Undercoat	1 (50 to 60)	Special penetrating epoxy aluminum paint							Severely corrosive environment
		Polyurethane	10	Topcoat	3 (45 to 90)	Polyisocyanate-based urethane resin paint		0	0	0	O	150	Location that is splashed with water Shore installation and shipboard installation Factories in which acid is used
Sandblast must be assigned.	Heavy rustproof paint	Thick epoxy type	16		5 (250 to 350)	Thick film type modified epoxy paint	0	O	0	0	O	150	Submersible equipment Ocean structure

Note) 1. The number of paint days indicates the number of extra days for special paint compared with the standard paint.

2. In the case of a special paint color, the pain specification may be changed.

3. Note that those with * symbol may be discolored due to sun's rays.

4. About thermal stability: Needs to be considered if the above table is exceeded depending on the ambient temperature. (The heat resistance temperature shown in the above table is that with coating only and not that of the drive.)

Please consult us in the case of the operating conditions to repeat normal temperature and low temperature in short time.

- These consult as in the case of the operating conditions to repeat normal temperature and low temperature in short time.
 Thick film epoxy, heavy duty anti-corrosion paint is limited in paint color. N1.0 and 7.5GY6/2 are fine, but please consult us for other paint colors. (Note that our standard paint color Danube Blue cannot be used for paint.)
- 7. Undercoat of the standard paint is omitted in some parts.
- 8. If you want long oil length phthalate ester type, specify an equivalent phenol type.
- 9. The types of paint are classified based on the type of topcoat paint type and we uniquely set undercoat and intermediate coat. There are customers that standardize different combinations using the same paint system name; these cases are handled as special paint.

Surface preparation is described in Table C23.

Table C23 Surface preparation

Degree of	State of the treated surface	Treatment method	Reference	e standard
treatment	State of the treated surface	Treatment method	SSPC	SIS
Scraping Class 1	Surface with all mill scale, rust, corrosive substances, dirt, and other foreign sub- stances. However, strong residual matters (mill scale, rust, minor stains of oxides, and discoloration) are not subject but at least 95% of the surface area has no clear residual matters and only minor discoloration, residual stain, etc. remain as shown above in the rest of the area.	Near White Blast Cleaning ○ Shot blast ○ Sandblast, etc.	SP-10	Sa-2 1/2
Scraping Class 2	Surface with mill scale and rust which do not adhere, corrosive substances, fat and oil, dirt, and other foreign substances retaining mill scale which does not adhere completely. However, strong residual matters (mill scale, rust, minor stains of oxides, and discoloration) are not subject but if there is pitting on the surface, residual matters of rust and coating will remain on the bottom. However, at least 2/3 of the surface area has no clear residual matters and only minor discoloration and residual stain remain as shown above in the rest of the area.	Commercial Blast Cleaning Power Tool Cleaning O Disk sander Wire wheel Grinder, etc.	SP-6 (SP-3)	Sa-2 (St-3)
Scraping Class 3	Remove the floating scale, rust, old coating, fat and oil, dirt, and other foreign matters with a wire brush, scraper, etc. The surface has a little metallic luster.	Hand Tool Cleaning O Wire brush O Scraper, etc.	SP-2	St-2

<Reference standard>SSPC Standard (U.S.A Steel Structual Painting Councils) SIS Standard (SWEDEN, SVENSK Standard, S.I.S 055900)

Paint color

The paint color of the standard specification is Donau Blue (Munsell 6.5PB 3.6/8.2). The paint color can be changed according to your device design, so please consult us.

Rust prevention

Rust prevention measures are taken for complete products we assemble before shipment according to the following standards.

Standard rust prevention specifications

External rust prevention

At the time of shipment from the factory, rust prevention oil is applied and shipped. After shipment, check the rust prevention status—whether rust is developing on the machined surface—every 6 months. Carry out rust prevention measures, such as re-application of rust prevention oil, as necessary.

Internal rust prevention

Lubrication	Grease Lubricated Machines
Rust prevention period	One year
Storage conditions	Store in an ordinary factory or warehouse in an environment free of moisture, dust, extreme temperature changes, corrosive gases, etc.

Special rust prevention specification (optional)

For export goods, or when the storage period is one year or longer, the special rust prevention specification is necessary. Please consult us for details.

Period	The warranty period applies only to new products and represents 18 months after the shipment or 12 months after the actual operation, whichever is shorter.
Description	If the product failed within the warranty period, during which despite a proper mounting, connection and maintenance & administration are followed according to the maintenance manual, and the product is properly run based on the specification on the catalog or under conditions agreed separately, we will repair or provide an alternative product at our discretion for free of charge, except the exclusions below. However, as far as the product is connected with customers' other devices, we will not indemnify those expenses on dismounting from/mounting on the devices, etc. and other associated construction expenses, transportation expenses and opportunity loss and operation loss the customers suffered from, and other indirect damages.
Exclusion from the warranty	 The following items will be excluded from the warranty: 1. Breakdown caused by faulty mounting of the product, or faulty connection with other devices. 2. Breakdown due to insufficient maintenance management, or appropriate handling not being carried out. For example, if the product is not stored according to the procedures set forth in the storage instructions prescribed by our company. 3. Breakdown caused by operational and usage conditions that our company could not have known, such as operations that deviate from the specifications; or failure due to the use of a lubricating oil other than recommended by our company. 4. Breakdown caused by defects in devices that have been connected by the customer; or breakdown due to special specifications. 5. Breakdown caused by making modifications or structural changes to the product. 6. Breakdown arising from a defect in a part supplied or specified by the user. 7. Breakdown caused by an earthquake, fire, flood damage, salt damage, gas damage, lightning strike, or other force majeure. 8. Warranty related to expendable parts when the expendable parts such as bearings and oil seals are naturally consumed, worn down, or deteriorated, even with proper usage. 9. Breakdown due to a reason not attributable to the responsibility of our company, other than the above items.

Warranty standard

BIBUS s.r.o. +420 547 125 300 www.bibus.cz

C45

For customers of the gearmotor

≜Safety Precautions

- Observe the safety rules necessary for the installation location and device in use.
 (Ordinance on Industrial Safety and Hygiene, electrical equipment technical standards, extension regulations, plant explosion proofing guide, Building Standards Act, etc.)
- Read the operation manual carefully before using the product, and always use it correctly.
 If the operation manual is required, please request one from a distributor or sales office.
 Be sure to keep the operation manual somewhere easily accessible to the operator of the product.
- Select a product suitable for your operating environment and application.
- If the product is to be used with devices for which a breakdown of the product could cause a loss of human life or a significant loss of equipment, such as human transport systems or hoisting equipment, install a protection device on the device side for safety.
- Use an explosion-proof motor in an explosive atmosphere. Also select an explosion proof motor whose specifications are suitable for dangerous places.
- When the unit is used in areas that are vulnerable to oil contamination, such as for food processing or cleanrooms, install an oil pan or other such device to cope with oil leakage due to breakdown or failure.

Precautions for operation of the motor for an inverter

Using a motor with brake

Use an independent power source for the brake, connect the brake power source to the power source side of the inverter, and shut off the inverter output while the brake is in operation (the motor is stopped). The lining may rattle at a low speed depending on the brake type.

Using an explosion-proof motor

The increased safety explosion-proof motors cannot be operated for an inverter. If it is necessary to drive an inverter with an explosion-proof motor, it must be combined with a flameproof motor, so please consult us.

Using with a 400V power source

If the wiring distance between the motor and inverter is long when driving an inverter with a 400V motor, contact us because it may be necessary to consider the dielectric voltage. (AF motors for inverter, premium-efficiency, 3-phase motors for inverter, and premium-efficiency, 3-phase motors feature insulation enhancements.)

Note: The numerical values in the specifications, dimension diagrams, and tables shown in this catalog, etc. may be changed without notice. Please contact us prior to designing just to be safe.

Worldwide Locations

U.S.A

 Sumitomo Machinery Corporation of America (SMA)

 4200 Holland Blvd. Chesapeake, VA 23323, U.S.A.

 TEL (1)757-485-3355

 FAX (1)757-485-7490

 Canada

 SM Cyclo of Canada, Ltd. (SMC)

 1453 Cornwall Road, Oakville, Canada ON L6J 7T5

 TEL (1)905-469-1050
 FAX (1)905-469-1055

Mexico

 SM Cyclo de Mexico, S.A. de C.V. (SMME)

 Av. Desarrollo 541, Col. Finsa, Guadalupe,

 Nuevo León, México, CP67132

 TEL (52)81-8144-5130

 FAX (52)81-8144-5130

Brazil Sumitomo Industrias Pesadas do Brasil Ltda. (SHIB) Rodovia do Acucar (SP-075) Km 26

Itu, Sao Paulo, Brasil TEL (55)11-4886-1000 FAX (55)11-4886-1000

Chile

SM-Cyclo de Chile Ltda. (SMCH) San Pablo 3507, Quinta Normal, Santiago, Chile TEL (56)2-892-7000 FAX (56)2-892-7001

Argentina

SM-Cyclo de Argentina S.A. (SMAR) Ing. Delpini, 2256 Area de Promocion el Triangulo, Partido Malvinas Argentinas Grand Bourg, Buenos Aires, Argentina B1615KGB TEL (54)3327-45-4095 FAX (54)3227-45-4099

Guatemala

SM Cyclo de Guatemala Ensambladora, Ltda. (SMGT) Parque Industrial Unisur, O Calle B 19-50 Zona 3, Bodega D-1 Delta Bárcenas en Villa Nueva, Guatemala

Bodega D-1 Delta Bárcenas en Villa Nueva, Guatemala TEL (502)6648-0500 FAX (502)6631-9171

Colombia

SM Cyclo Colombia, S.A.S. (SMCO) Carrera 11, No.93A-53, Office 203, Bogotá, Colombia TEL (57)1-3000673

Germany

 Sumitomo (SHI) Cyclo Drive Germany GmbH (SCG)

 Cyclostraße 92, 85229 Markt Indersdorf, Germany

 TEL (49)8136-66-0
 FAX (49)8136-5771

Austria

Sumitomo (SHI) Cyclo Drive Germany GmbH (SCG) SCG Branch Austria Office Gruentalerstraße 30A, 4020 Linz, Austria TEL (43)732-330958 FAX (43)732-331978

Belgium

Sumitomo (SHI) Cyclo Drive Germany GmbH (SCG) SCG Branch Benelux Office

 Heikneuterlaan 23, 3010 Kessel-Lo, Leuven, Belgium

 TEL (32)16-60-83-11
 FAX (32)16-60-16-39

France

 SM-Cyclo France SAS (SMFR)

 8 Avenue Christian Doppler, 77700 Serris, France

 TEL (33)164171717

 FAX (33)164171718

 Ittaly

 SM-Cyclo Italy Srl (SMIT)

 Via dell' Artigianato 23, 20010 Cornaredo (MI), Italy

 TEL (39)293-481101
 FAX (39)293-481103

Spain

 SM-Cyclo Iberia, S.L.U. (SMIB)

 C/Landabarri No. 3, 6° B, 48940 Leioa, Vizcaya, Spain

 TEL (34)9448-05389
 FAX (34)9448-01550

Sweden SM-Cyclo Scandinavia AB (SMSC) Industrigatan 21B, 234 35 Lomma, Sweden TEL (46)40220030

United Kingdom

SM-Cyclo UK Ltd. (SMUK) Unit 29, Bergen Way, Sutton Fields Industrial Estate, Kingston upon Hull, HU7 0YQ, East Yorkshire, United Kingdom TEL (44)1482-790340 FAX (44)1482-790321

Turkey

SM Cyclo Turkey Güç Aktarım Sis. Tic. Ltd. Sti. (SMTR) Büyükdere Çayırbaşı Cd. Dede Yusuf Sk. No: 11, 34453 Sarıyer İstanbul, Turkey TEL (90)216-384-4482 FAX (90)216-384-4482

China

 Sumitomo (SHI) Cyclo Drive China, Ltd. (SCT)

 11F, SMEG Plaza, No. 1386 Hongqiao Road,

 Changning District, Shanghai, China (P.C. 200336)

 TEL (86)21-3462-7877

 FAX (86)21-3462-7922

Hong Kong

 SM-Cyclo of Hong Kong Co., Ltd. (SMHK)

 Rm 1301, CE0 Tower, 77 Wing Hong Street,

 Cheung Sha Wan, Kowloon, Hong Kong

 TEL (852)2460-1881

 FAX (852)2460-1882

Korea

 Sumitomo (SHI) Cyclo Drive Korea, Ltd. (SCK)

 Royal Bldg. 9F Rm. 913, 5 Danju-Dong, Chongro-Ku,

 Seoul, Korea 110-721

 TEL (82)2-730-0151
 FAX (82)2-730-0156

Taiwan

 Tatung SM-Cyclo Co., Ltd. (TSC)

 22 (hungshan N. Road 3rd., Sec. Taipei, Taiwan 104, R.O.C.

 TEL (886)2-2595-7275

 FAX (886)2-2595-5594

 Singapore

 Sumitomo (SHI) Cyclo Drive Asia Pacific Pte.

 Ltd. (SCA)

 15 Kwong Min Road, Singapore 628718

 TEL (65)6591-7800
 FAX (65)6863-4238

 Philippines

 Sumitomo (SHI) Cyclo Drive Asia Pacific Pte.

 Ltd. (SCA)

 Philippines Branch Office

 B2B Granville Industrial Complex, Carmona,

 Cavite 4116, Philippines

 TEL (63)2-584-4921

 FAX (63)2-584-4922

 TEL (63)46-438-20579 - 81

Vietnam

 SM-Cyclo (Vietnam) Co., Ltd. (SMVN)

 Factory 2B, Lot K1-2-5, Road No. 2-3-5A,

 Le Minh Xuan Industrial Park, Binh Chanh Dist.,

 HCMC, Vietnam

 TEL (84)8-3766-3709

 FAX (84)8-3766-3710

Malaysia

SM-Cyclo (Malaysia) Sdn. Bhd. (SMMA) No.7C, Jalan Anggerik Mokara 31/56, Kota Kemuning, Seksyen 31, 40460 Shah Alam, Selangor Darul Ehsan, Malaysia TEL (60)3-5121-0455 FAX (60)3-5121-0578

Indonesia

PT. SM-Cyclo Indonesia (SMID) Jalan Sungkai Blok F 25 No. 09 K, Delta Silicon 5, Lippo Cikarang, Bekasi 17530, Indonesia TEL (62)21-2961-2100 FAX (62)21-2961-2211

Thailand

SM-Cyclo (Thailand) Co., Ltd. (SMTH) 1 Empire Tower, Unit 2103-4, 21st Floor, South Sathorn Road, Yannawa, Sathorn, Bangkok 10120, Thailand TEL (66)2670-0998 FAX (66)2670-0999

Australia

 Sumitomo (SHI) Hansen Australia Pty. Ltd.

 (SHAU)

 181 Power St, Glendenning, NSW 2761, Australia

 TEL (61)2-9208-3000
 FAX (61)2-9208-3050

India

Sumi-Cyclo Drive India Private Limited (SMIN) Survey No. 130, Hissa No. 02, Jeevan Nagar, Off Mumbai-Bangalore Bypass, Tathawade, Pune - 411033, India TEL (91)20-6674-2900 FAX (91)20-6674-2901

Japan

Specifications, dimensions, and other items are subject to change without prior notice.

 Sumitomo Heavy Industries, Ltd. (SHI)

 ThinkPark Tower, 1-1 0saki 2-chome, Shinagawa-ku,

 Tokyo 141-6025, Japan

 TEL (81)3-6737-2511

 FAX (81)3-6866-5160

📀 Sumitomo Heavy Industries, Ltd.

Power Transmission & Controls Group

Headquarter ThinkPark Tower, 1-1 Osaki 2-chome, Shinagawa-ku, Tokyo 141-6025, Japan

No.C2050E-1.0 EA08 Printed 2017.07