Mechanical power cylinder

Special

Actual thrust : 2t / 5t

Overview

An environmentally-friendly cylinder that allows 2t or 5t high thrust power at your desired position with a pneumatic source alone.

Description	
Product introduction	1176
Series variation	1178
Mechanical power cylinder (MCP)	1180
A Safety precautions	1188

The cylinder switches T2YH, T2YV, T3YH, and T3YV are scheduled for end of production at the end of December 2023.

Realizes high thrust at any position using only a pneumatic source! Incorporated flexibly into a multi-model production line

Mechanical power cylinder

MCP Series

Thrust eight times higher than a cylinder with the same bore size is achieved during boosting.

Space saving design needs no dedicated units.

No oil is used, eliminating the need for maintenance such as lubrication and oil replacement.

Free installation

LCR LCG LCW

LCX STM STG STS/STI STR2

UCA2 ULK* JSK/M2

JSC3/JSC4 USSD UFCD USC UB JSB3 LMB

LML HCM

HCA LBC

CAC4 UCAC2

CAC-N UCAC-N RCS2

RCC2 PCC SHC

MCP GLC MFC

BBS RRC

GRC RV3* NHS HRL LN Hand Chuk MethdlChuk ShkAbs FJ FK SpdContr

Ending

Operation principle

Rapid feed stroke

When the rapid feed section of cylinder contacts the workpiece, the circled section is coupled due to the internal mechanism.

After coupling, force is conveyed to the rapid feed section by operating the booster section, generating high thrust.

1176

СКД

Boost power at an arbitrary position!

Automatic boosting even if the workpiece height is changed or there are variations in the workpiece.

Booster stroke 10 mm or more is possible!

You can hold down the workpiece at rapid speeds until the required booster stroke, and repeat the pressure and exhaust of the booster stroke unit.

Applications

Swaging

Cutting

Press-fitting

Bending

LCM LCR LCG LCW I CX STM STG STR2 UCA2 ULK* JSK/M2 JSG JSC3/JS USSD UFCD USC UB JSB3 LMB I MI HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC GRC RV3 NHS HRL LN Hand Chuk MecHnd/Ch ShkAbs FJ FK SpdCont Ending

101-1-1-10M

1

CKD

Series variation

Mechanical power cylinder MCP Series

Variation	Model No.	Effective thrust (Thrust at 0.6 MPa)	Stroke (mm)	
Rapid feed + booster	MCP-W	For 2t/5t	50/100/150/200/250/300/350/400/450/500	
Booster section only	MCP-S	For 2t/5t	10	

●: Standard ◯:Op									
			Mou	nting	Option				
	Min. stroke	Max. stroke	Basic	Rod side flange	Rod end male thread	Page			
	(mm)	(mm)	00	FA	Ν				
	50	500	•	•	0	1190			
	-	-	•	•	0	1100			

LCM	
LCR	
LCG	
LCW	
LCX	
STM	
STG	
910 919/91	
STD2	_
	,
UCA2	
ULK	
J5K/IVI2	
JSG	
1803/180	4
USSE)
UFCL)
USC	
UB	
JSB3	
LMB	
LML	
HCM	
HCA	
LBC	
CAC4	
UCAC	2
CAC-N	٧
CAC-N UCAC-I	N N
CAC-N UCAC-I RCS2	N N
CAC-N UCAC-I RCS2 RCC2	V V 2
CAC-N UCAC-I RCS2 RCC2 PCC	N N 2
CAC-N UCAC-I RCS2 RCC2 PCC SHC	
CAC-N UCAC-I RCS2 RCC2 PCC SHC MCP	
CAC-N UCAC-I RCS2 RCC2 PCC SHC MCP	
CAC-N UCAC-I RCS2 RCC2 PCC SHC MCP GLC MEC	
CAC-N UCAC-I RCS2 RCC2 PCC SHC MCP GLC MFC BBS	N N 2
CAC-N UCAC-I RCS2 PCC SHC MCP GLC MFC BBS RBC	
CAC-N UCAC-I RCS2 PCC SHC MCP GLC MFC BBS RRC	N N 2
CAC-I UCAC-I RCS2 RCC2 PCC SHC GLC MFC BBS RRC GRC GRC	
CAC-I UCAC-I RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC GRC GRC GRC GRC SHS	
CAC-I UCAC-I RCS2 RCC2 PCC SHC GLC MFC BBS RRC GRC RV3* NHS	
CAC-1 UCAC-1 RCS2 RCC2 PCC SHC GLC MCP GLC BBS RRC GRC GRC RV3* NHS HRL	N N 2
CAC-1 UCAC-1 RCS2 RCC2 PCC SHC GCC MFC BBS RRC GRC GRC RV3* NHS HRL LN	
CAC-1 UCAC-1 RCS2 RCC2 PCC SHC GCC MFC BBS RRC GRC GRC GRC RV3* NHS HRL LN Hand	
CAC-1 UCAC-1 RCS2 RCC2 PCC SHCP GLC MFC BBS RRC GRC GRC RV3* NHS HRL LN Hand Chuk	
CAC-I UCAC-I RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC GRC RV3* NHS HRL LN Hand Chuk Metal	
CAC-I UCAC-I RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC GRC RV3* NHS HRL LN Hand Chuk Metedon ShkAb	N N 2 2 3 4 4 5
CAC-I UCAC-I RCS2 RCC2 PCC SHC MCP GLC BBS RRC GRC GRC GRC GRC RV3* NHS HRL LN Hand Chuk Metholon ShkAb FJ	N N 2 2 4 k s
CAC-1 UCAC-1 RCS2 RCC2 PCC SHC GLC MFC BBS RRC GRC GRC GRC GRC RV3* NHS HRL LN Hand Chuk Meter ShkAb FJ FJ FJ FX	N N 2 2 k k s
CAC-1 UCAC-1 RCS2 RCC2 PCC SHC GLC MFC BBS RRC GRC GRC GRC GRC GRC RV3* NHS HRN Hand Chuk Metallo ShkAb FJ FK SpdCon	N N 2 2 k k s tr
CAC-1 UCAC-1 RCS2 RCC2 PCC SHC GLC MCP GLC BBS RRC GRC GRC GRC GRC RV3* NHS HRL LN Hand Chuk M&MC FJ FK SpdCon Ending	N N 2 2 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
CAC-1 UCAC-1 RCS2 RCC2 PCC SHC GLC MFC BBS RRC GRC GRC GRC GRC RV3* NHS HRL LN Hand Chuk Metholoh FJ FK SpdCon Ending	N N S S S S S S

Mechanical power cylinder

MCP Series

Effective thrust: For 2t/5t

1 MPa = 10 bar

Specifications

12	ltom		Effective thrust (Thrust at 0.6 MPa)					
0.1	item		2 (for 2t)	5 (for 5t)				
04 D	Working fluid		Compressed air					
D	Actuation		Rapid feed : Double acting,	Booster : Single acting push				
	Min. working pressure	MPa	Rapid feed : 0.3 (≈44 psi, 3 bar), Boo	ster and MCP-S: 0.2 (≈29 psi, 2 bar)				
3	Max. working pressure	e MPa	0.6 (≈87 p	osi, 6 bar)				
	Proof pressure	MPa	1.0 (≈150 p	osi, 10 bar)				
1	Ambient temperature	°C	-5 (23°F) to 60 (14	0°F) (no freezing)				
1	Rod end form		Female thread (ma	ale thread optional)				
	Booster stroke	mm	10 +	5 * 1				
4	Rapid feed port size		Rc1/4	Rc3/8				
-N	Booster port size		Rc3/8					
-N	Rapid feed working pis	ston speed mm/s	50 to 300					
2	Booster working pistor	n speed mm/s	10 to 50					
2	Lubrication		Not available					
	Theoretical booster thrust	0.3 MPa (≈44 psi)	S=11.5 W=13.9	S=28.5 W=33.1				
	(when the booster and rapid	0.4 MPa (≈58 psi)	S=15.7 W=18.9	S=38.7 W=44.9				
	feed pressures are equal)	0.5 MPa (≈73 psi)	S=19.9 W=23.8	S=49.0 W=56.7				
	*2 KN	0.6 MPa (≈87 psi)	S=24.1 W=28.8	S=59.2 W=68.4				
;	Theoretical rapid	0.3 MPa (≈44 psi)	Forward 2.3, backward 1.6	Forward 4.6, backward 2.9				
ł	food thrust	0.4 MPa (≈58 psi)	Forward 3.1, backward 2.1	Forward 6.1, backward 3.8				
		0.5 MPa (≈73 psi)	Forward 3.9, backward 2.7	Forward 7.6, backward 4.8				
_		0.6 MPa (≈87 psi)	Forward 4.7, backward 3.2	Forward 9.2, backward 5.8				

*1 : By repeating pressurizing and exhaust of the booster section only, a 10-mm boost per repeat can be obtained within the total stroke.

*2 : The actual thrust is about 80% of the theoretical value

*3 : Because MCP-S is a single acting cylinder, the applied load (jig weight) on the piston rod end should be 20 kg or less for the 2t and 50 kg or less for the 5t.

Air consumption

Air consumption per reciprocation of booster stroke ℓ (ANR)

Pressure (MPa)	0.2	0.4	0.5	0.6	
Thrust	0.3	0.4	0.5	0.0	
2t	2.51	3.13	3.76	4.38	
5t	6.13	7.65	9.18	10.70	

Air consumption per 100 mm reciprocation of rapid feed stroke & (ANR)

Pressure (MPa) Thrust	0.3	0.4	0.5	0.6
2t	5.28	6.60	7.91	9.23
5t	9.95	12.43	14.91	17.39

Total stroke *4

Standard stroke (mm)	Max. stroke (mm)	Min. stroke (mm)	Min. stroke with switch (mm)
50,100,150,200,250,300,350,	500	50	50
400,450,500			

*4 : For "rapid feed stroke + booster stroke", set the stroke of "+5 mm and over" as total stroke.

Specifications

LCM

UCAC2

CAC-N

UCAC-N

RCS2 RCC2 PCC SHC

MCP

GLC MFC BBS RRC GRC RV3 NHS HRL LN

Ending

Unit: kg

Switch specifications (T-switch)

Ownton											LCD					
Proximity 2-wire Proximity 2-wire					F	Proximity 3-wire				Reed 2-wire						LCG
ltem	T1H/T1V	T2H/T2V/ T2JH/T2JV	T2YH/ T2YV	T2WH/ T2WV	T3H/ T3V	T3PH/ T3PV	T3YH/ T3YV	T3WH/ T3WV	тон	/T0V	T5H	/T5V	T	⁻ 8H/T8	v	LCW LCX
Applications	For programmable controller, relay,	D	edicated	for	For p	rogramm	able cont	troller,	For prog	ammable	For programm relay, IC circu	able controller, it (no indicator	For p	rogrami	nable	STM STG
Output method	compact solenoid valve	piografi -			NPN output	output PNP output NPN output NPN output -				CON	tioner, r	elay	STR2			
Pwr. supp. V.		-				10 to 28 VDC						-				ULK*
Load voltage	85 to 265 VAC	10 to 3	30 VDC	24 VDC ±10%		30 VDC	or less		12/24 VDC	110 VAC	5/12/24 VDC	110 VAC	12/24 VDC	110 VAC	220 VAC	JSK/M2
Load current	5 to 100 mA	5 t	o 20 mA	(*3)	100 mA	or less	50 mA	or less	5 to 50 mA	7 to 20 mA	50 mA or less	20 mA or less	5 to 50 mA	7 to 20 mA	7 to 10 mA	JSG JSC3/JSC4
Indicator	LED (Lit when	LED (Lit when	Red/green LED	Red/green LED	LED (Lit when	Yellow LED (Lit when	Red/green LED	Red/green LED	LED		No indicator		/1 :4	LED		USSD
	ON)	ON)	(Lit when ON)	(Lit when ON)	ON)	ON)	(Lit when ON)	(Lit when ON)		en ON)		пр		when c	JN)	USC
Leakage current	≤ 1 mA at 100 VAC, ≤ 2 mA at 200 VAC	1 mA or less 10 μA or less 0 mA					10 µA or less				JSB3 LMB					
	1 m:33	1 m:18	1 m:33	1 m:18	1 m	n:18	1 m:33	1 m:18		1 m	า:18		1	m:33		LML HCM
Weight g	3 m:87	3 m:49	3 m:87	3 m:49	3 m	1:49	3 m:87	3 m:49		3 n	า:49		3	m:87		HCA
	5 m:142	5 m:80	5 m:142	5 m:80	5 m	1:80	5 m:142	5 m:80		5 m	า:80		5	m:142		LBC
*1 · Dofor	to Ending D	200 1 for	holictob r	ewitch e	nocificati	one and	dimoneio	ne								CAC4

*1 : Refer to Ending Page 1 for detailed switch specifications and dimensions.

*2 : Switches other than the above models, such as switches with connectors, are also available. Refer to Ending Page 1.

*3 : The max. load current is 20 mA at 25°C. The current is lower than 20 mA if the operating ambient temperature around the switch is higher than 25°C. (5 to 10 mA at 60°C)

Cylinder weight

MCP-S (booster only)

ltom	Product weight	for 10st stroke	Additional weight	Additional weight	Switch weight	
item	Basic (00)	Rod side flange (FA)	per 100 mm	for male thread (N)	Switch weight	
MCP-S-2-10	14.3	16.9	-	0.4	Refer to the weight in the	
MCP-S-5-10	36.1	43.4	-	1.2	switch specifications.	

MCP-W (rapid feed + booster)

MCP-W (rapid feed + booster) Unit: k									
Product weight when at 0 mm stroke Additional weight Additional weight Orwitals weight Mounting	Chuk MacHnd/Chul								
Basic (00) Rod side flange (FA) per 100 mm for male thread (N)	ShkAbs								
MCP-W-2 24.3 26.9 1.9 0.95 Refer to the weight in the 0.024	FJ								
MCP-W-5 63.8 71.1 4.5 4.6 switch specifications. 0.030	FK SpdConti								

(Example) Product weight of MCP-W-00-2-100-T2H-D-N

Male thread additional weight0.92 kg

- Weight of 2 T2H switches0.018 x 2 = 0.036 kg
- Weight of 2 mounting brackets0.024 x 2 = 0.048 kg

CKD

How to order switch

Switch body + mounting bracket set MCP 2 тон Effective thrust (Item () above) Switch model No. (Item D above) Note : A switch bracket is not required for MCP-S. CKD

Switch mounting bracket set

MCP 2 Effective thrust (Item C above) Mounting bracket

By repeating pressurizing and exhaust of the booster section only, a 10-mm boost per repeat can be obtained within the total stroke.

1183

CKD

ACAUTION

Set the total stroke with some margin over the sum of the rapid feed stroke and booster stroke. Refer to the precautions on page 1189 for details about total stroke settings.

Internal structure and parts list

MCP-S (booster only)

LCM LCR LCG

LCW LCX STM STG

STS/STL STR2 UCA2 ULK* JSK/M2 JSG

JSC3/JSC4 USSD UFCD

USC

HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2

PCC SHC

UB JSB3 LMB LML HCM

Cannot be disassembled

мср	No	Part name	Matorial	Pomarke	No	Part namo	Matorial	Pomarke
GLC	NO.	Fart hame	Wateria	Remarks	NO.	Part name	Wateria	Remarks
MFC	1	Rod cover (S)	Cast iron	Trivalent chromate	18	Gasket	Nitrile rubber	
BBS	2	Return spring	Steel	Black finish	19	Piston	Aluminum alloy	Alumite treatment
RC	3	Booster rod	Alloy steel	Electroless nickel plating	20	Spacer	Aluminum alloy	Alumite treatment
RV3*	4	Slide bar	Steel		21	Gasket	Nitrile rubber	
NHS	5	Hexagon socket head cap screw	Alloy steel	Black finish	22	Single acting spring	Steel	Black finish
HRL	6	Intermediate cover	Steel	Trivalent chromate	23	Wear ring (S)	Polyacetal resin	
_N Hand	7	Hexagon socket head cap screw	Alloy steel	Black finish	24	Spring holder	Steel	Trivalent chromate
Chuk	8	Plug silencer	Steel + sintered alloy	Zinc plated	25	Spring holder pin	Stainless steel	
lecHnd/Chuk	9	Taper rod	Alloy steel		26	Retainer spring	Steel	Black finish
ShkAbs	10	Single acting spring holder	Steel	Trivalent chromate	27	Front plate	Steel	Trivalent chromate
-J FK	11	Booster cylinder tube	Aluminum alloy	Hard alumite	28	Hexagon socket head cap screw	Alloy steel	Black finish
SpdContr	12	Magnet (S)	Plastic		29	Cam	Alloy steel	
Ending	13	Piston packing (S)	Nitrile rubber		30	Pin	Steel	
	14	Cushion rubber	Urethane rubber		31	Retainer	Steel	Trivalent chromate
	15	Hexagon socket head cap screw	Alloy steel	Black finish	32	Roller (S)	Alloy steel	
	16	C-snap ring (for hole)	Steel	Black finish	33	Hexagon socket head cap screw	Alloy steel	Black finish
	17	Cover	Aluminum allov					

Note : This product cannot be disassembled.

LCM

LCR LCG

LCW LCX STM

HCA LBC CAC4 UCAC2 CAC-N UCAC-N

RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC GRC RV3 NHS HRL LN Hand Chuk MecHnd/Chuk ShkAbs FJ FK SpdContr Ending

MCP-W (rapid feed + booster)

Cannot be disassembled

No.	Part name	Material	Remarks	No.	Part name	Material	Remarks
1	Plug	Steel	Trivalent chromate	34	Gasket	Nitrile rubber	
2	Gasket	Nitrile rubber		35	Cover	Aluminum alloy	
3	Dust wiper	Nitrile rubber		36	Piston	Aluminum alloy	Alumite treatment
4	Rod packing (W)	Nitrile rubber		37	Spacer	Aluminum alloy	Alumite treatment
5	Rod cover (W)	Cast iron	Trivalent chromate	38	Gasket	Nitrile rubber	
6	Gasket	Nitrile rubber		39	Single acting spring	Steel	Black finish
7	Moving cylinder tube	Aluminum alloy	Alumite treatment	40	Wear ring (S)	Polyacetal resin	
8	Piston rod	Steel	Hard chrome plating	41	Spring holder	Steel	Trivalent chromate
9	Clutch shaft	Steel		42	Spring holder pin	Stainless steel	
10	Wear ring (W)	Fiber-reinforced phenolic resin		43	Retainer spring	Steel	Black finish
11	Connection piston B	Steel	Trivalent chromate	44	Front plate	Steel	Trivalent chromate
12	Connection piston A	Alloy steel		45	Hexagon socket head cap screw	Alloy steel	Black finish
13	Piston packing (W)	Nitrile rubber		46	Cam	Alloy steel	
14	Magnet spacer A	Stainless steel		47	Pin	Steel	
15	Magnet (W)	Plastic		48	Retainer	Steel	Trivalent chromate
16	Magnet spacer B	Aluminum alloy	Alumite treatment	49	Roller (S)	Alloy steel	
17	Head cover (W)	Aluminum alloy	Alumite treatment	50	Hexagon socket head cap screw	Alloy steel	Black finish
18	Rod cover (S)	Cast iron	Trivalent chromate	51	Rod packing (S)	Nitrile rubber	
19	Return spring	Steel	Black finish	52	Hexagon socket head cap screw	Stainless steel	
20	Booster rod	Alloy steel		53	Hexagon socket set screw	Alloy steel	Black finish
21	Slide bar	Steel		54	Roller presser spring	Steel	Black finish
22	Hexagon socket head cap screw	Alloy steel	Black finish	55	Roller presser	Alloy steel	
23	Intermediate cover	Steel	Trivalent chromate	56	Roller (W)	Alloy steel	
24	Hexagon socket head cap screw	Alloy steel	Black finish	57	Release piston packing	Nitrile rubber	
25	Plug silencer	Steel + sintered alloy	Zinc plated	58	Release piston	Steel	Trivalent chromate
26	Taper rod	Alloy steel		59	Gasket	Nitrile rubber	
27	Single acting spring holder	Steel	Trivalent chromate	60	Gasket	Nitrile rubber	
28	Booster cylinder tube	Aluminum alloy	Hard alumite	61	Tie rod	Steel	Trivalent chromate
29	Magnet (S)	Plastic		62	Conical spring washer	Steel	Black finish
30	Piston packing (S)	Nitrile rubber		63	Round nut	Steel	Trivalent chromate
31	Cushion rubber (S)	Urethane rubber		64	Guide rubber	Urethane rubber	
32	Hexagon socket head cap screw	Alloy steel	Black finish	65	Cushion rubber (W)	Urethane rubber	
33	C-snap ring (for hole)	Steel	Black finish	66	Release spring	Steel	Black finish

Note : This product cannot be disassembled.

CKD 1185

Dimensions (MCP-S)

LCM LCR LCG

LCW LCX

STM

STG

STS/STL

STR2

UCA2

ULK*

JSG

USC

JSB3 LMB

LML

HCM HCA LBC CAC4 UCAC2

CAC-N UCAC-N

RCS2

RCC2 PCC

SHC MCP GLC

MFC BBS RRC

GRC RV3*

NHS HRL

LN

Hand

Chuk

FJ FK SpdContr

MecHnd/Chuk ShkAbs

Ending

UB

Rod end male thread (N)

CAD

Rod side flange (FA)

Code	Basic dimensions															
Thrust	Α	В	С	D	Е	F	G	н	I	J	к	L	-			
2 (for 2t)	416.5	379.5	223.5	17	Rc3/8	37	5	60	32	90	118	M12 de	epth 20			
5 (for 5t)	501	447	252	23.5	Rc3/8	54	12	100	45	128	167	M16 de	epth 25			
Code			Ва	sic dir	nensio	ns										
Thrust	MN	1	N	0	Р	Q	R	Y								
2 (for 2t)	17 M20 depth 24		epth 24	31	98	-	104	27								
5 (for 5t)	24	M30 de	epth 36	-	142	36	142	41								
Codo	Rod side flange (FA) Rod							d end	end male thread (N)						With s	witcl
Coue		-				x			FC	N	NA	T0, T5,	T2, T3	T1, T2Y,	T3Y, T2J	T2V
Thrust	5		U	v	vv		FA	гв				RD	HD	RD	HD	RD
2 (for 2t)	154	185	18	87	118	20	37	40	77	M26	x1.5	55.5	23	54.5	22	57.5
5 (for 5t)	208	250	22	126	171	30	60	63	117	M40	x1.5	80.5	26	80	25	83

Male thread

T2W, T3W

HD

25

28

Т8

RD

49.5

74.5

HD

17

LCM LCR LCG

LCW LCX STM STG

STR2

UCA2

ULK*

JSG

JSC3/JSC

JSK/M2

Basic (00)

Rod end male thread (N)

Rod side flange (FA)

Code								Basic	dimer	nsions								
Thrust	A	в	CA	СВ	D	E	EA	F	FI	G	н	I	IA	J	к	L	LA	
2 (for 2t)	559.5	180	16	10	17	Rc3/8	Rc1/4	63	25	23	70	55	50	90	118	M12	(5.4)	
5 (for 5t)	692	245	24	15	23.5	Rc3/8	Rc3/8	73	30	33	110	85	80	128	167	M16	(6.5)	
Code		Basic dimensions																
Thrust	LB	MN	1	N	0	Р	Q	R	Y									
2 (for 2t)	16	20	M20 de	epth 24	31	98	-	104	46	-								
5 (for 5t)	25	25	M30 de	epth 36	-	142	36	142	75									
Codo	Rod side flange (FA)						Rod end male thread (N)				With switch							
Code		-			14/		v	F A	F D	F.0			T0, T5, T2, T3 T1, T2Y, T3Y, T2J			T2W,	1	
Thrust			U	v	vv	GA	^	FA	ГВ	FC	N	A	RD	HD	RD	HD	RD	
2 (for 2t)	154	185	18	87	118	3	20	69	72	135	M45	x1.5	105	18	104	17	107	
5 (for 5t)	208	250	22	126	171	3	30	135	140	213	M72	x2.0	140	21.5	139	21	142	

*1 : Rapid feed section RD dimension is 15 mm short of the rod side stroke end. (Refer to page 1189.)

*2 : For RD/HD booster dimensions, refer to page 1186 (MCP-S outline drawing).

99

134

T8 RD

HD

12

Pneumatic components

Safety Precautions

Be sure to read this section before use.

Refer to Intro Page 73 for general information of the cylinder, and to Intro Page 80 for general information of the cylinder switch.

Design/selection

A DANGER

Before starting, be sure to supply air to the travel section's retract side to apply back pressure. The piston rod may pop out, which is extremely dangerous.

If an external force in the direction of cylinder retraction is applied to the piston rod when the cylinder retracts after the boost, operate within the following value limits (maximum) to prevent the risk of coupling release failure or booster failure.

MCP-W-2: 1000N or less MCP-W-5: 3000N or less

When using the product for punching out or cutting workpieces, the piston rod may pop out. When the piston rod pops out, it can contact the rod cover (W) for the rapid feed section cylinder and cause impact sound or damage to the cylinder from the impact. Always use an external stopper or shock absorber within the total stroke.

Do not apply lateral load or eccentric load to the piston rod.

If the cylinder is operating in a direction other than the vertical direction, the tip load will be applied to the cylinder. In this case, use a guide that prevents the load from being applied to the cylinder.

- Use the cylinder in a mechanism in which the piston rod does not rotate so that no torque is applied to the rod. Otherwise, there is a risk of coupling release failure or booster failure.
- Do not use multiple synchronized cylinders.

CKD

If external force is applied in the direction of the cylinder retraction due to the spring or external shock buffer when the cylinder retracts, the external force should be within the following values: MCP-W-2: 1000N or less

MCP-W-5: 3000N or less

- After boosting, provide a time lag of 0.5 seconds or more between booster section retraction and rapid feed section retraction. If the rapid feed section retracts before the booster, the cylinder could be damaged if the booster pops out when the coupling is released. Also, do not use the booster while in the meter-out position. The cylinder could be damaged if the booster pops out when the coupling is released.
- Use discrete solenoid valves for booster and rapid feed sections. When using embedded into a manifold, be sure to take countermeasures such as using a single exhaust spacer.
- Do not advance the booster at the same time that the rapid feed section reaches the end of its travel. Coupling faults could result. Provide a time lag of one second or longer from after the rapid feed section moves forward and contacts the workpiece to when the booster section starts traveling.
- Using the product near a welder, etc., can magnetize the product, which may cause the cylinder switch to malfunction. Avoid use in an environment that may have magnetic fields.
- Because MCP-S is a single acting cylinder, the applied load (jig weight) on the piston rod end should be 20 kg or less for the 2t and 50 kg or less for the 5t.

LCM LCR LCG LCW I CX STM STG STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 UFCD USC UB LMB I MI HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC GRC RV3^{*} NHS HRL LN Hand Chuk MecHnd/Chuk ShkAbs FJ FK SpdContr

Ending

Product-specific cautions

When using the booster stroke, the total stroke should be well within the stroke end.

(1) If there is no external stopper

(When using the booster stroke up to the full stroke)

Set the total stroke so that it is greater than the sum of the travel stroke and 5 mm.

However, the travel stroke is equal to the sum of the rapid feed stroke and the booster stroke.

Applications

·Press-fitting, bending (pressing), etc.

(2) If there is an external stopper (When not using the booster stroke up to the full stroke)

Set the external stopper so that the total stroke is greater than the sum of travel stroke and 1 mm. However, the travel stroke is equal to the sum of the rapid

Applications ·Punching, cutting, etc.

feed stroke and the pressing length.

The retraction end of the booster section can be detected by installing a cylinder switch on the booster section.

To install a cylinder switch, purchase only the switch body.

- In the state where the booster section has not been allowed to completely return, if the booster is made to move forward repeatedly, damage to the booster section cylinder could result. In the case where the cycle time is short, use the cylinder switch to detect if the booster section cylinder is moving back to the end of the stroke.
- Because there is a possibility of a failed release of connection or a run-out of the piston rod, do not use the quick exhaust valve on the head side of the rapid feed section.
- MCP-W cannot be held in the booster state for a long period of time. Retract within roughly 60 seconds after boosting has commenced.

LCR LCG LCW I CX STM STG STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 USSD UFCD USC UB LMB I MI HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MEC BBS RRC GRC RV3* NHS HRL LN Hand Chuk MecHnd/Chu ShkAbs FJ FK

*3

SpdContr

Ending

LCM

l	Solenoid valve	Travel stroke	Booster stroke
	Operation status	SOL1	SOL2
	Rapid feed advancement	ON	OFF
	Rapid feed stroke end	ON	OFF
_	Standby for 1 sec or more *2	ON	OFF
	Booster advancement	ON	ON
_	Booster retraction *1	ON	OFF
	Standby for 0.5 sec or more *3	ON	OFF
_	Rapid feed return	OFF	OFF
.			

*1 : Piston rod cannot be retracted while the booster section is returning. *2 : Time required for the air to be exhausted from the rapid feed rod side

and the rapid feed and booster sections to connect.Time required for the air to be exhausted from the booster head side and the rapid feed and booster sections to release.

- Due to the time required to couple the rapid feed section and booster section, a 1-second wait is necessary before the booster cylinder starts to advance from the rapid feed stroke end (after the rapid feed cylinder advances and stops). If the exhaust from the rapid feed rod side is restricted as in the following cases, the wait may have to be longer than 1 second. Set the standby time with a margin of safety.
 When the solenoid valve flow volume is minimal
 When speed controller at rod side of the rapid feed cylinder is restricting flow (Fig. C above)
 When the piping for the rapid feed section is long
 When the piping diameter for the rapid feed section is narrow
- Because the booster section is retracted before the rapid feed section, a 0.3 to 0.5-second wait is necessary from the start of booster cylinder retraction to the start of rapid feed cylinder retraction. If the exhaust from the booster section is restricted as in the following cases, the wait may have to be longer than 0.5 seconds. Set the standby time with a margin of safety.
 When the solenoid valve flow volume is minimal
 When the piping for the booster section is long
 When the piping diameter for the booster section is narrow

By repeating pressurizing and exhaust of only the booster section after rapid feed, a 10 mm boost can be obtained per repeat. (Repeat boosting 3 times when 30 mm boosting is required)

[Circuit example when press-fitting 30 mm]

Solenoid valve	Rapid feed stroke	Booster stroke
Operation status	SOL1	SOL2
Rapid feed advancement	ON	OFF
Rapid feed stroke end	ON	OFF
Standby for 1 sec or more *2	ON	OFF
Booster advancement 1st time	ON	ON
Booster retraction *1	ON	OFF
Booster advancement 2nd time	ON	ON
Booster retraction *1	ON	OFF
Booster advancement 3rd time	ON	ON
Booster retraction *1	ON	OFF
Standby for 0.5 sec or more *3	ON	OFF
Rapid feed return	OFF	OFF

*1 : Piston rod cannot be retracted while the booster section is returning.

*2 : Time required for the air to be exhausted from the rapid feed rod side and the rapid feed and booster sections to connect.

*3 : Time required for the air to be exhausted from the booster head side and the rapid feed and booster sections to release.

Mounting, installation and adjustment

CAUTION

- Do not disassemble the product.
- Do not lubricate the cylinder, as this may cause malfunction.
- While the mounting direction is unrestricted, if the cylinder is operating in a direction other than the vertical direction, the end load will be applied to the cylinder. In this case, use a guide that prevents the load from being applied to the cylinder.
- Tighten so that torque is not applied to the cylinder. When fixing the workpiece to the end of the piston rod, use a wrench to tighten for mounting.

GLC MFC BBS RRC GRC RV3* NHS HRL

LN Hand Chuk

MecHnd/Chuk ShkAbs

FJ

FK SpdContr

Ending