Oscillation/rotation drive

RRRC Rotary actuator

Size 8/32/63

Overview

This is a compact rack and pinion rotary actuator. Torque: 0.7, 3.1, 5.6 $N{\cdot}m$

CONTENTS									
Series variation	1284								
Product introduction	1284								
Rack & pinion (RRC)	1286								
Selection guide	1292								
A Safety precautions	1294								

The cylinder switches T2YH, T2YV, T3YH, and T3YV are scheduled for end of production at the end of December 2023.

Series variation

LCM LCR LCG LCW LCX STM STG STR2 UCA2 ULK* JSK/M2 JSC3/JSC4 USSD UFCD USC UB JSB3 LMB I MI HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC GRC **RV3*** NHS HRL LN Hand Chuk

MecHnd/Chuk ShkAbs

SpdContr

Ending

FJ FK

Rotary actuator **RRC** Series

Variation	Model No. JIS symbol	Size	Effective torque (0.5 MPa) (N·m)	Max. oscillating angle (°)				
				90				
	RRC	8	0.7					
Rack and pinion	\rightarrow	32	3.1	•				
		63	5.6					

Product introduction

đ

Max. oscillating angle 270°

Torques of 0.7, 3.1, 5.6 N·m (working pressure 0.5 MPa) and oscillating angles of 90°, 180°, 270°, are included in the series.

Х

}-----

Select the ideal model for your application.

.

- 777

 Space saving Compact and thin design permits installation in a narrow space.

Stable torque/long service life Uses a unique mechanism combining two linear cylinders with rack and pinion gears. Torque is stable even at low pressure, and internal/external leakages are the same as that of the linear cylinder. Furthermore, long service life is achieved.

Cushion needle direction can be changed RRC-32 and 63 only are 3-directional.

Cushion provided as standard Rubber cushion or air cushion is provided as standard.

RRC Series

Series variation

					00.								
●: Standard, ©: Option, ○: Made to order, ■: Not available Option													
	Max. oscilla (°	ating angle ')	Adjustable angle	Copper and PTFE free	Switch	Page	STG STS/STL STR2 UCA2 ULK* JSG JSC3/JSC4 USSD UFCD USC UB JSB3 LMB						
	180	270	А	P6			HCM						
	•	●	O	O	O	1286	HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP						
							GLC MFC BBS RRC GRC						

RV3* NHS HRL LN Hand Chuk MethdChuk ShkAbs FJ FK SpdContr Ending

Rotary actuator Rack & pinion

RRC Series

Oscillating angle: 90°/180°/270°

JIS symbol

Specifications

•									
ltem			RRC						
Size		8	32	63					
Effective torque	'¹ N∙m	0.7	5.6						
Actuation		Rack and pinion mechanism							
Working fluid			Compressed air						
Max. working pressu	re MPa		1.0 (≈150 psi, 10 bar)						
Min. working pressure	e ^{*₂} MPa		0.1 (≈15 psi, 1 bar)						
Proof pressure	MPa	1.6 (≈230 psi, 16 bar)							
Ambient temperat	ture °C	-10 (14°F) to 60 (140°F) (no freezing)							
Port size		Rc1/8							
Oscillating angle tole	rance °	90 ⁺⁸ ₊₁ , 180 ⁺⁸ ₊₁ , 270 ⁺⁸ ₊₁							
Cushion		Rubber cushion	Air cu	shion					
Effective cushion leng	gth mm	-	4.8	5.8					
Allowable absorbed e	nergy J	0.05	0.21	0.41					
Volumetric	90°	3	12	22					
	180°	6	24	44					
	270°	9	36	66					
Lubrication		Not required (use turb	ine oil ISO VG32 if neo	essary for lubrication)					

Max. load

Use the load applied to the shaft at the values below or less.

			Unit: N
Model No. Load direction	RRC-8	RRC-32	RRC-63
Thrust load F1	9.8	39.2	58.8
Radial load F2	19.6	78.4	117.6
Radial load F2	19.6	78.4	117.6

*1 : Effective torque value is at working pressure 0.5 MPa.

*2 : When using RRC-8 with max. oscillating angle, the working pressure is to be 0.3 MPa and over.

*3 : Adjustable angle is available as an option. Refer to page 1291.

Switch specifications

1 color/2 color display

1-00101/2-00101	display

	Proximity 2-wire	Prox	imity 2	-wire	P	roximi	ty 3-wi	re	Reed 2-wire												
ltem	T1H/	T2H/	T2YH/	T2WH/	T3H/	T3PH/	T3YH/	T3WH/	тоц	/TOV	тец	/T5\/	-	гоц/то\	,						
	T1V	T2V	T2YV	T2WV	T3V	T3PV	T3YV	T3WV	IVH	/100	130	150									
Applications	For programmable	De	edicated	for	For programmable				For progr	For programmable For programmable controller			For programmable								
Applications	compact solenoid valve	program	mable c	ontroller	controller, relay				controll	er, relay	lamp), seria	l connection	con	troller, re	elay						
Output method		-			NPN output	PNP output	NPN output	NPN output													
Pwr. supp. V.		-			10 to 28 VDC							-									
Load voltage	85 to 265 VAC	10 to 3	0 VDC	24 VDC ±10%		30 VDC or less			12/24 VDC	100/110 VAC	5/12/24 VDC	100/110 VAC	12/24 VDC	110 VAC	220 VAC						
Load current	5 to 100 mA	5 to	20 mA	(*3)	100 mA	or less	50 mA	or less	5 to 50 mA	7 to 20 mA	50 mA or less	20 mA or less	5 to 50 mA	7 to 20 mA	7 to 10 mA						
Indicator			Red/green	Red/green	Yello [•]		ellow Red/green Red/green					indicator									
Indicator			LED	LED		LED	LED	LED	LE (1.54)a									muicator			NI)
lamp	(Lit when ON)	(Lit when ON)	(Lit when ON)	(Lit when ON)	(Lit when Oiv)	(Lit when ON)	(Lit when ON)	(Lit when ON)		en ON)	lar	пр		t when O	(Ni						
Leakage	≤ 1 mA at 100 VAC,	1	m A or lo			10	orloop					0 m 4									
current	≤ 2 mA at 200 VAC			:55		το μΑ	UI IESS					UIIA									
	1 m: 33	1 m:18	1 m: 33	1 m:18	1 m	n:18	1 m: 33	1 m:18		1 m	n:18		1 m: 33								
Weight g	3 m: 87	3 m:49	3 m: 87	3 m:49	3 m	n:49	3 m: 87	3 m:49		3 m	:49 3			3 m: 87							
	5 m:142	5 m:80	5 m:142	5 m:80	5 m	n:80	5 m:142	5 m:80		5 m:80			5 m:142								
*1 . Defer	to Engline			بالأنبيدة أمحا		finations	منام ام مرج		-												

Refer to Ending Page 1 for detailed switch specifications and dimensions.

*2 : Switches other than the above models, such as switches with connectors, are also available. Refer to Ending Page 1.

*3 : The max. load current is 20 mA at 25°C. The current is lower than 20 mA if the operating ambient temperature around the switch is higher than 25°C. (5 to 10 mA at 60°C)

Cylinder	weight
----------	--------

Cylinder	weight	t		Unit: kg				
Oscillating angle	٥٥٥	1900	2700	Switch weight	Switch mounting bracket			(Example) Product weight of RRC-8-90-T2H-D
Model No.	90	100	210	(per 1 pc.)	90°	180°	270°	Body weight0.39 kg
RRC-8	0.39	0.43	0.49	Refer to the weight		0.005		Switch weight 0.018 2 pcs. = 0.036 kg
RRC-32	1.02	1.23	1.45	in the switch	0.011	0.013	0.015	Switch mounting bracket weight 0.005 2 pcs. = 0.010 kg
RRC-63	1.68	2.03	2.37	specifications.	0.012	0.014	0.016	Product weight 0.39 kg + 0.036 kg + 0.010 kg = 0.436 kg

How to order

RRC Series How to order

```
RRC Series
```


No.	Part name	Material	Remarks	No.	Part name	Material	Remarks
1	Cap (2)	Aluminum alloy		16	Bearing		
2	Cap gasket	Nitrile rubber		17	Cover	Aluminum alloy	
3	Body	Aluminum alloy		18	Shaft	Steel	
4	Piston	Stainless steel		19	Key	Steel	
5	Magnet	Plastic		20	Cushion rubber	Urethane rubber	RRC-8 only
6	Piston packing	Nitrile rubber		21	DU bush		RRC-8 only
7	Wear ring	Acetal resin		22	Switch		
8	Cushion packing	Nitrile rubber	Excluding RRC-8	23	Stop plate	Stainless steel	
9	Needle	Copper alloy	Excluding RRC-8	24	Phillips pan head machine screw/captive washer	Steel	
10	Needle gasket	Nitrile rubber	Excluding RRC-8	25	Fixing nut	Stainless steel	
11	Cap (1)	Aluminum alloy		26	Switch rail	Aluminum alloy	
12	U nut	Steel	Excluding RRC-8	27	Hexagon socket set screw	Steel	
13	Hexagon socket set screw	Alloy steel					
14	Phillips flat head machine screw	Steel					
15	Hexagon socket head cap screw	Alloy steel					

Repair parts list

-32K	
C-63K 2000	9
, ,	-32K 2 0 7 8 0

Note: Specify the kit No. when placing an order.

		Α										R	D								
Code	le Oscillating angle			T1*		-	T2*/T3	*		T0*/T5	*		T8*		Tź	2Y*/T3	Y*	T2	W*/T3	W*	
AlaboM			Oscillating angle Oscill		Oscillating angle		Oscil	Oscillating angle		Oscil	Oscillating angle		Oscillating angle		Oscillating angle		Oscillating angle		angle		
No.	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°
RRC-8	94	109	124	31	36	40	33	37	41	30	37	41	24	31	35	31	36	40	34	39	43
	LD																				
Code		T1* T2*/T3* T0*/T5*			T8* T2Y*/T3Y*				T2W*/T3W*												
AlaboM	Oscillating angle		Oscil	lating	angle	Oscil	lating	angle	Oscil	Oscillating angle Oscillating angle			Oscillating angle								
No.	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°			
RRC-8	31	36	40	33	37	41	30	37	41	24	31	35	31	36	40	34	39	43			

Note: Dimensions other than the above are the same as the type without switch.

RRC Series

	LD																	
Code Model No.	T1*			T2*/T3*		T0*/T5*		T8*		T2Y*/T3Y*		T2W*/T3W*						
	Oscillating angle		Oscillating angle		Oscillating angle		Oscillating angle		Oscillating angle		Oscillating angle							
	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°	90°	180°	270°
RRC-32	56	66	75	58	67	77	57	67	76	51	61	70	56	66	75	59	69	78
RRC-63	64	75	86	65	76	87	65	76	87	59	70	81	64	75	86	67	78	89

78

89

Note: Dimensions other than the above are the same as the type without switch.

KD

Dimensions: Option

Adjustable angle

3 port positions each are provided on the R and L sides, as in the figure above.

Code	Ĺ)		Allowable absorbed energy J	Hexagon head bolt dimension for		
Model No.	MIN	MAX	AA	(For adjustable angle single 10°)	adjustable angle (Common for R and L		
RRC-8	10.7	11.5	4	0.02	M5×0.5		
RRC-32	13.4	15.5	6	0.06	M6×0.75		
RRC-63	13.5	16.0	7	0.13	M6×0.75		

Key dimensional drawing

Model No.	Α	В	к	D	Е
RRC-32	16 ⁰ -0.18	13	1.5	3 _{-0.025}	0.2
RRC-63	20 _{-0.21}	16	2	4 _{-0.030}	0.2

LCM LCR LCG LCW LCX STM STG STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC USSD UFCD USC UB JSB3 LMB LML HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC GRC RV3* NHS HRL LN Hand Chuk MecHnd/Chuk ShkAbs FJ FK SpdContr Ending

LCM	Selection guide of	rotary actuator					
LCG	Step 1	Oscillating time ch	eck				
LCW							
LCX	Use an osci	llating time within the specified ra	nge o	f the table below.			
STM	Oscillating an	gle (degree)					
SIG	Model No.	<u> </u>		180			
SIS/SIL STD2	RRC-8	8 0.015 to 0.151		0.030 to 0.302			
	BRC-	32 0.038 to 0.377		0.075 to 0.754			
ULK*	RRC_6	63 0 073 to 0 440		0.147 to 0.880			
JSK/M2	* The see illusting			0.147 to 0.000			
JSG		g time in the table is the time for the oscilla	ting to e	end after movement be			
JSC3/JSC4		O' a sala ati a s					
USSD	Step 2	Size selection					
UFCD							
USC	When si	mple static pushing force is re	quire	ed for clamp, etc			
JSB3	Statia load	7					
LMB	Static load						
LML	(1) Determir	ne the working pressure. P(MPa)		Calculation of req			
HCM	(2) Determir	ne the required force. F(N)	➡				
HCA	(3) Length o	of arm from rotary		T = Fℓ (N			
LBC	actuator	is determined $\rho(m)$					
CAC4							
CAC N							
UCAC-N	To move	eload					
RCS2			ן ר				
RCC2	Resistance	e load		Calculation of resis			
PCC	When ann	lving force (resistance load) including		$T_{\rm p} = K \times F_{\rm p} \times \theta (N)$			
SHC	frictional fo	frictional force, gravity or other external forces					
MCP		bice, gravity of other external forces.		K. Slack coefficie			
GLC	(1) Determin	re the working pressure. P(MPa)		If no load fluctuatio			
BBS	(2) Determin	The the required force. $F_R(N)$		If load fluctuates			
RRC	(3) Length o	of arm from rotary		(When resistance f			
GRC	actuator	is determined. $\ell(m)$		caused by gravity			
RV3*			- 	If load fluctuates w			
NHS		4		the change in anal			
HRL	Inertia load	1		increases			
LIN	When the of	bject is rotated.					
Chuk	(1) Oscillatir	ng angle/oscillating time and	'				
MecHnd/Chuk	working	pressure are determined.	_	•			
ShkAbs	Oscill	lating angle θ (rad)					
FJ	Oscill	lating time t(s)					
FK	Work	ing pressure P(MPa)		Dequired terring			
SpdContr		90°=1.5708(rad)					
Ending		180°=3.1416(rad)					
		270°=4.7124(rad)					
	(2) Calculate	the load moment of the inertia		1			
	according	to the load shape and weight. Refer to	r				
	moment c	of inertia table for the calculation formula.					

Unit: S

270

0.045 to 0.452

0.113 to 1.131

Step 3 Check of allowable energy

When using an inertial load, keep the load energy lower than the rotary actuator's allowable energy.

θ: Oscillating angle (rad)

t: Oscillating time (s)

(1) Angular speed at oscillation edge $\omega = \frac{2\theta}{t}$ (rad/s) θ : Oscillating angle (rad) t: Oscillating time (s)

(2) Calculation of load inertia energy

I (kg·m²)

$$E = \frac{1}{2} x I x \omega^2 (J)$$

(3) Confirm that the load inertia energy E is equal to or less than the allowable energy of the rotary actuator. When exceeding the allowable energy, an external shock absorber, etc., will be required.

KD

RRC Series Selection guide

Figure for moment of inertia calculation									
● Wh	en rotary shaft passes through the Sketch	ne workpiece Requirements	Moment of inertia I kg·m ²	Radius of K12	Remarks	LCG LCW			
Dial plate St		● Diameter d(m) ● Weight M(kg)	$I = \frac{Md^2}{8}$	$\frac{d^2}{8}$	 No mounting direction For sliding use, contact CKD. 	LCX STM STG STS/STL STR2 UCA2 ULK* JSK/M2			
Circular stepped plate		 ● Diameter d₁(m) d₂(m) ● Weight d₁ section M₁(kg) d₂ section M₂(kg) 	$I = \frac{1}{8} (M_1 d_1^2 + M_2 d_2^2)$	$\frac{d_1^2 + d_2^2}{8}$	 Ignore when the d₂ section is extremely small compared to the d₁ section 	JSG JSC3/JSC4 USSD UFCD USC UB JSB3			
Bar (center of rotation at end)	R R C R C R C R C R C R C R C R C R C R	● Bar length R(m) ● Weight M(kg)	$I = \frac{MR^2}{3}$	$\frac{R^2}{3}$	 Mounting direction is horizontal Oscillating time changes when the mounting direction is vertical 	LMB LML HCM HCA LBC CAC4 UCAC2 CAC-N			
Thin rod	R ₂	● Bar length R ₁ R ₂ ● Weight M ₁ M ₂	$I = \frac{M_1/R_1^2}{3} + \frac{M_2/R_2^2}{3}$	$\frac{R_1^2 + R_2^2}{3}$	 Mounting direction is horizontal Oscillating time changes when the mounting direction is vertical 	UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC			
Bar (center of rotation at center of gravity)		● Bar length R(m) ● Weight M(kg)	$I = \frac{MR^2}{12}$	<u>R²</u> 12	No mounting direction	BBS RRC GRC RV3* NHS HRL LN Hand			
Thin rectangle plate (rectangular parallelepiped)		 Plate length a₁ a₂ Side length b Weight M₁ M₂ 	$I = \frac{M_1}{12} (4a_1^2 + b^2) = \frac{M_2}{12} (4a_2^2 + b^2)$	<u>(4a1²+b²)+(4a2²+b²)</u> 12	 Mounting direction is horizontal Oscillating time changes when the mounting direction is vertical 	Chuk Mechnd/Chuk ShkAbs FJ FK SpdContr Ending			
Rectangular parallelepiped		● Side length a(m) b(m) ● Weight M(kg)	$I = \frac{M}{12} (a^2 + b^2)$	<u>a²+b²</u> 12	 No mounting direction For sliding use, contact CKD. 				
Concentrated load	R1 Concentrated load M1 R2 Arm M2	 Shape of concentrated load Length to center of gravity of concentrated load R₁(m) Arm length R₂(m) Concentrated load weight M₁(kg) Arm weight M₂(kg) 	$I = M_1(R_1^2 + k_1^2) + \frac{M_2 R_2^2}{3}$	Calculate k ₁ ² according to shape of concentrated load	 Mounting direction is horizontal When M₂ is extremely small compared to M₁, it may be calculated as M₂ = 0 				
Gear Gear	b Load IL b Load IL Rotary	or shaft rotation when using w ● Gear - Rotary side (tooth number) a, Load side (tooth number) b ● Load moment of inertia N·m	Load moment of inertia for the rotary actuator's shaft rotation $I_{H} = \left(\frac{a}{b}\right)^{2} I_{L}$		• When gear shape is larger, gear moment of inertia should be considered.				
					CKD 12	293			

Pneumatic components

Safety Precautions

Be sure to read this section before use.

Refer to Intro Page 73 for general information of the cylinder, and to Intro Page 80 for general information of the cylinder switch.

Product-specific cautions: Rotary actuator rack and pinion mechanism RRC Series

Design/selection

Do not apply torque exceeding rated output externally to the product.

If force exceeding rated output is applied, the product could be damaged.

If oscillating angle repeatability is required, directly stop external load.

The initial oscillating angle may change even with products provided with adjustable angles.

If the axial load (thrust load) on the shaft exceeds the allowable value, faulty operation could occur. Therefore, do not apply a load in excess of the allowable value. If this is unavoidable, use a structure with a thrust bearing as shown in Fig.1.

Avoid applying bending (radial) load exceeding the allowable value onto the shaft end, or faulty operation could occur.

When unavoidable, use a mechanism transmitting only rotation as shown in Fig. 2.

When connecting the shaft end and load at any position in the oscillation range, use flexible couplings, etc., that will not twist off to prevent the shaft from breaking and bearings from wearing or seizing.

Fig. 2 Radial load

■ Install the external stopper in a position far from the rotary shaft.

If the stopper is installed near the rotary shaft, torque generated by the product could be applied to the rotary shaft. This reaction on the stopper may damage the rotary shaft or bearings, possibly resulting in injury to the operator or damage to equipment or devices.

If the load weight is large and oscillation speed is high, large inertia could be generated and allowable absorbed energy exceeded, possibly damaging the rotarv actuator.

Install a shock absorber to absorb inertia.

When installing a load or jig, etc., on the rotary actuator shaft, check that load is not applied to the body as shown in Fig.3.

- Prevent seizing at rotating sections. Apply grease to rotating sections (pins, etc.) to prevent seizing.
- The retention torque of the oscillating end is about half that of the effective torque, so a load factor of 50% or less should be used.
- Generally, select the model so that the output torque is twice or more than that required by load. The RRC Series uses a double piston, so if the oscillating angle is adjusted by the stopper bolt, torque at the oscillation end will be half the effective torque.
- Even if the required torque load is low during oscillation motion, the load inertia may lead to actuator damage. Upon consideration of moment of inertia, kinetic energy and oscillating time, be sure to use with the allowable energy or less.

I CX STM STG STR2 UCA2 ULK* JSK/M2 JSG JSC3/JSC4 USSD UFCD USC UB LMB I MI HCM HCA LBC CAC4 UCAC2 CAC-N UCAC-N RCS2 RCC2 PCC SHC MCP GLC MFC BBS RRC GRC RV3^{*} NHS HRL LN Hand Chuk MecHnd/Chuk ShkAbs FJ FK SpdContr Ending

LCM

LCR

LCG LCW

RRC series Product-specific cautions

LCM

LCR LCG LCW

I CX

STM

STR2

UCA2

ULK*

JSG

JSC3/JS

UFCD

USC

LMB

I MI

HCM

HCA

LBC

CAC4 UCAC2

CAC-N

UCAC-N

RCS2 RCC2

PCC

SHC MCP GLC

MFC

BBS RRC

GRC

UB JSB3

JSK/M2

Mounting, installation and adjustment

When adjusting the angle by supplying pressure, do not rotate the device too much in advance. When adjusting while supplying pressure, the device could rotate and drop during adjustment, depending on how it is oriented, possibly resulting in operator, component, or device injury or damage.

Do not loosen the angle adjustment hexagon bolt beyond the adjusting range.

Loosening more than the adjusting range may cause the angle adjustment bolt to fall out, potentially causing bodily injury or damage to the workpiece/device/equipment. The cylinder's oscillating angle will decrease when the angle adjustment hexagon bolt is rotated clockwise. Observe steps (1) to (5) when adjusting the angle. If adjustments are not made this way, the seal washer will be damaged after one or two adjustments.

[Angle adjustment procedure] (1) First loosen the hexagon nut

- as shown in Fig.1.
- (2) Second, remove the seal washer cap (2) by hand to reach the state shown in Fig. 2.
- (3) Turn the angle adjustment hexagon bolt, hexagon nut, and seal washer together as shown in Fig.3, and adjust the angle. Check that the rubber section of the seal washer does not bite into the thread part.
- (4) After adjusting the angle, move the seal washer near to the cap (2) by hand as shown in Fig. 4.
- (5) Tighten securely with the hexagon nut as shown in Fig. 5. Check that the rubber section of the seal washer does not bite into the thread part.
- Securely tighten the hexagon nut after adjusting the angle. If not adequately tightened, the hex nut could loosen in the course of usage, resulting in external leakage.

Seal washer

Fig

Hexagon head bolt

for adjustable angle

Hexagon nut Cap (2)

RV3[★] NHS HRL LN Hand Chuk MecHnd/Chuk ShkAbs FJ FK SpdContr

Ending