Torque size 0.12 to $206 \mathrm{~N} \cdot \mathrm{~m}$

Series variation
 Rotary actuator (with vane mechanism) RV3* Series

 Chuk ShkAbs| | Compact (RV3*1 | to RV3*30 | | | | | St | dard | : | ptio | | | ot | va | le |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|l\|} \hline \frac{ᄃ}{0} \\ .0 \\ . \frac{\pi}{0} \\ \sqrt[0]{10} \\ > \end{array}$ | Model No. | | $\begin{aligned} & 0 \\ & \stackrel{0}{\sqrt{\pi}} \end{aligned}$ | | Oscillating angle | | | | | $\begin{aligned} & \text { ᄃ } \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \end{aligned}$ | | | | | $\begin{aligned} & 0 \\ & \underset{\sim}{0} \\ & \hline \end{aligned}$ |
| | | RV3S1 | Single | 0.12 | - | | \bigcirc | \bigcirc | | | (0) | © | © | | 1338 |
| | | RV3D1 | Double | 0.28 | \bigcirc | | | | | | (0) | (0) | © | | |
| | | RV3S3 | Single | 0.31 | \bigcirc | | \bigcirc | \bigcirc | | \bigcirc | (0) | (0) | (0) | | |
| | | RV3D3 | Double | 0.71 | \bigcirc | | | | | \bigcirc | (o) | (0) | © | | |
| | | RV3S10 | Single | 0.98 | \bigcirc | | \bigcirc | \bigcirc | | \bigcirc | () | ($)$ | © | | |
| | | RV3D10 | Double | 2.11 | \bigcirc | | | | | \bigcirc | () | (0) | \bigcirc | | |
| | | RV3S20 | Single | 1.70 | \bigcirc | | \bigcirc | \bigcirc | | \bigcirc | () | (0) | \bigcirc | | |
| | | RV3D20 | Double | 3.88 | \bigcirc | | | | | \bigcirc | () | (0) | \bigcirc | | |
| | | RV3S30 | Single | 3.19 | \bigcirc | | \bigcirc | \bigcirc | | \bigcirc | | (0) | © | | |
| | | RV3D30 | Double | 7.70 | \bigcirc | | | | | \bigcirc | | (0) | (0) | | |
| $\left\|\begin{array}{l} 0 \\ \frac{2}{0} \\ 0 \\ 5 \\ 3 \\ 3 \end{array}\right\|$ | | RV3S ${ }_{\text {w }}^{V} 10$ | Single | 0.98 | - | | \bigcirc | \bigcirc | | \bigcirc | | (| (o) | | 1350 |
| | | RV3D ${ }_{w}^{\text {V } 10}$ | Double | 2.11 | \bigcirc | | | | | \bigcirc | | (0) | (0) | | |
| | | RV3S ${ }_{\text {w }} 20$ | Single | 1.70 | \bigcirc | | \bigcirc | \bigcirc | | \bigcirc | | (0) | © | | |
| | | RV3D ${ }_{\text {w }}{ }^{\text {20 }}$ | Double | 3.88 | \bigcirc | | | | | \bigcirc | | (0) | (0) | | |
| | | RV3S ${ }_{\text {w }}^{V} 30$ | Single | 3.19 | \bigcirc | | \bigcirc | \bigcirc | | \bigcirc | | (0) | © | | |
| | | RV3D ${ }_{\text {w }} 30$ | Double | 7.70 | \bigcirc | | | | | \bigcirc | | (0) | \bigcirc | | |
| $\left\lvert\, \begin{aligned} & \frac{0}{0} \\ & \frac{0}{4} \end{aligned}\right.$ | | RV3SA3 | Single | 0.31 | | | ${ }^{\text {a }}$ | | | \bigcirc | | (0) | (0) | | 1354 |
| | | RV3DA3 | Double | 0.71 | | | | | | \bigcirc | | (0) | (o) | | |
| | | RV3SA10 | Single | 0.98 | | | | | | \bigcirc | | (0) | © | | |
| | | RV3DA10 | Double | 2.11 | | | | | | \bigcirc | | (0) | © | | |
| | | RV3SA20 | Single | 1.70 | | | | | | \bigcirc | | (0) | (o) | | |
| | | RV3DA20 | Double | 3.88 | | | | | | \bigcirc | | (0) | \bigcirc | | |
| | | RV3SA30 | Single | 3.19 | | | | | | \bigcirc | | (0) | \bigcirc | | |
| | | RV3DA30 | Double | 7.70 | | | | | | \bigcirc | | (0) | © | | |

Series variation

Large (RV3*50 to RV3*800)

RV3s ${ }_{\text {D }}^{\text {Series }}$

Torque: 1/3/10/20/30
Oscillating angle: $90^{\circ}, 180^{\circ}, 270^{\circ}$
JIS symbol

Specifications

Single vane mechanism

Item	RV3S													
Size	1		3			10			20			30		
Effective torque $\mathrm{N} \cdot \mathrm{m}$	0.12		0.31			0.98			1.70			3.19		
Actuation	Single vane													
Working fluid	Compressed air													
Max. working pressure MPa	0.7 ($\sim 100 \mathrm{psi}, 7 \mathrm{bar}$)								1.0 ($150 \mathrm{psi}, 10 \mathrm{bar}$)					
Min. working pressure MPa	0.2 ($29 \mathrm{psi}, 2 \mathrm{bar}$)													
Proof pressure MPa	1.05 ($\approx 150 \mathrm{psi}, 10.5 \mathrm{bar}$)								1.5 ($2220 \mathrm{psi}, 15 \mathrm{bar}$)					
Ambient temperature ${ }^{\circ} \mathrm{C}$	$-5\left(23^{\circ} \mathrm{F}\right)$ to $80\left(176{ }^{\circ} \mathrm{F}\right)^{* 3}$											-5 $\left(23^{\circ} \mathrm{F}\right)$ to $60\left(140^{\circ} \mathrm{F}\right)$		
Port size	M5											Rc1/8		
Oscillating angle tolerance	90 ${ }_{0}^{+4}{ }^{180} 18{ }_{0}^{+4}$	270 ${ }_{0}^{+4}$	90_{0}^{+4}	180_{0}^{+4}	270 ${ }_{0}^{+4}$	90_{0}^{+4}	180_{0}^{+4}	270 ${ }_{0}^{+4}$	90 ${ }_{0}^{+4}$	180_{0}^{+4}	270_{0}^{+4}	90_{0}^{+3}	180 ${ }_{0}^{+3}$	270_{0}^{+3}
Oscillating origin	45, 90	45	45, 90		45	45, 90		45	45, 90		45	45		
Allowable absorbed energy ${ }^{* 1} \mathrm{~mJ}$	0.6		1.5			3			15			25		
Max. operating frequency ${ }^{\text {² }}$ cycle/min	300 180 1.4	96	240	150	60	240	150	90	210	120	84	180	90	60
Volumetric capacity cm^{3}	1.4	1.5	3	4	4	9	8	12	1	7	21		7	43
Allowable radial load N	30		40			50			300			400		
Allowable thrust load N	3		4						25			30		
Weight $\quad \mathrm{kg}$	0.036		0.07			0.14			0.25			0.47		0.46
Switch unit weight $\quad \mathrm{kg}$	-		0.04			0.04			0.05			0.05		
Lubrication	Not required (use turbine oil class 1 ISO VG32 if necessary for lubrication)													

Double vane mechanism

Item	RV3D				
Size	1	3	10	20	30
Effective torque $\quad \mathrm{N} \cdot \mathrm{m}$	0.28	0.71	2.11	3.88	7.70
Actuation	Double vane				
Working fluid	Compressed air				
Max. working pressure $\quad \mathrm{MPa}$	0.7 ($\sim 100 \mathrm{psi}, 7 \mathrm{bar}$)			1.0 ($\approx 150 \mathrm{psi}, 10 \mathrm{bar}$)	
Min. working pressure $\quad \mathrm{MPa}$	0.2 ($29 \mathrm{psi}, 2 \mathrm{bar}$)				
Proof pressure MPa	1.05 ($\sim 150 \mathrm{psi}, 10.5 \mathrm{bar}$)			1.5 ($2220 \mathrm{psi}, 15 \mathrm{bar}$)	
Ambient temperature $\quad{ }^{\circ} \mathrm{C}$	$-5\left(23^{\circ} \mathrm{F}\right)$ to $80\left(176^{\circ} \mathrm{F}\right)^{* 3}$				-5 (23 ${ }^{\circ} \mathrm{F}$) to $60\left(140^{\circ} \mathrm{F}\right)$
Port size	M5				Rc1/8
Oscillating angle tolerance	90^{+4}				90_{0}^{+3}
Oscillating origin	45				
Allowable absorbed energy ${ }^{* 1} \mathrm{~mJ}$	0.6	1.5	3	15	25
Max. operating frequency ${ }^{\text {² }}$ cycle/min	300	240		210	180
Volumetric capacity cm^{3}	1.1	2.8	8.1	15	34
Allowable radial load N	30	40	50	300	400
Allowable thrust load N	3	4		25	30
Weight kg	0.037	0.072	0.14	0.26	0.48
Switch unit weight $\quad \mathrm{kg}$	-	0.04	0.04	0.05	0.05
Lubrication	Not required (use turbine oil ISO VG32 if necessary for lubrication)				

[^0]Specifications/operational principle
Switch specifications

Item	Proximity switch
	SR-* (-U)
Applications	For programmable controller/relay/IC circuit/compact solenoid valve
Output method	NPN output
Power supply voltage	5 VDC to 30 VDC
Load voltage/current	5 to $30 \mathrm{VDC}, 200 \mathrm{~mA}$ or less
Current consumption	20 mA or less with 24 VDC
Internal voltage drop	1.5 V or less
Indicator lamp	LED (Lit when ON)
Leakage current	$10 \mu \mathrm{~A}$ or less
Lead wire length	1 m (oil resistant vinyl cabtyre cable 4-conductor $0.2 \mathrm{~mm}{ }^{2}$)
Shock resistance	$490 \mathrm{~m} / \mathrm{s}^{2}$
Insulation resistance	100 MS or more with 500 V megger
Withstand voltage	No failure after 1 minute of $1,000 \mathrm{VAC}$ application.
Ambient temperature	5 to $60^{\circ} \mathrm{C}$
Degree of protection	IEC standards IP67, JIS C0920 (water tight)

Operational principle

Single vane

1. Configured with vane sliding on the internal body surface, integrated shaft, and shoe (stopper).
2. Air from port A pushes vane, rotates shaft, and generates torque.
3. Air in opposite chamber is exhausted from port B, and the shaft rotates clockwise.
4. Vane stops when it contacts the shoe.
5. Air supply from port B causes counterclockwise rotation in the same manner.

Double vane

1. Configured with two vanes sliding on the internal body surface, integrated shaft, and two shoes (stoppers).
2. Air from port A pushes vane, goes through passage in shaft, pushes another vane, turns shaft, and finally generates torque.
3. Rotates in the same way as the single vane.

How to order

- Compact rotary actuator (standard) RV3*

A Precautions for model No. selection
*1 : The type with switch is not available for the axial port position direction " S ".
*2 : The mounting bracket (FA, LS) is attached at shipment. Refer to pages 1348 and 1349 for dimensions.
[Example of model No.]
RV3S3-90-45-SR-U-FA
F
Option
(*1, *2)
Model: Compact rotary actuator
A Model No. : S
B Nominal size: 3
C Oscillating angle : 90
D Oscillating origin : 45°
E Switch : With radial lead wire switch
(F) Option

With flange bracket

- How to order switch unit

Radial lead wire

Output characteristics, etc.
Oscillating origin position

Oscillating origin 45°
RV3s 1 to 30

Output characteristics graph (effective torque)
RV3s 1 to 10

- Oscillating origin 90°

RV3S1 to 20

*1 : Tolerance of oscillating origin is based on mounting screw position.
*2 : Deflection of torsion angle between keyway on longer axis side (or cut plane) and square on shorter axis side within 1.5°.

- RV3s 20,30

Output table (effective torque)
($\mathrm{N} \cdot \mathrm{m}$)

Working pressure (MPa)		0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Model No.										
Single vane	RV3S1	-0.04	0.07	-0.10	-0.12	-0.15	-0.18	-	-	-
	RV3S3	0.1	0.17	0.24	0.31	0.38	0.45	-	-	-
	RV3S10	0.35	0.56	0.75	0.98	1.2	1.39	-	-	-
	RV3S20	0.59	0.95	1.33	1.7	2.1	2.49	2.87	3.26	3.68
	RV3S30	1.1	1.8	2.5	3.19	4.1	4.8	5.8	6.5	7.2
Double vane	RV3D1	0.10	0.16	0.22	0.28	0.34	0.40	-	-	-
	RV3D3	0.25	0.39	0.54	0.71	0.86	1.01	-	-	-
	RV3D10	0.76	1.17	1.62	2.11	2.54	3.03	-	-	-
	RV3D20	1.4	2.22	3.06	3.88	4.7	5.53	6.33	7.17	8.07
	RV3D30	2.7	4.4	6	7.7	9.5	11.2	12.99	14.8	16.6

Oscillating time setting

1. Use oscillating time taking the ranges in the table below as a guide.

Compact rotary actuator

Model No.	Oscillating angle		
	90°	180°	270°
RV3 ${ }_{\text {S }} 1$	0.03 to 0.3	0.06 to 0.6	0.09 to 0.9
RV3 S 3	0.04 to 0.8	0.08 to 1.6	0.12 to 2.4
RV3 ${ }_{\text {S } 10}$	0.045 to 0.9	0.09 to 1.8	0.135 to 2.7
RV3 ${ }_{\text {S }} 20$	0.05 to 1.0	0.10 to 2	0.15 to 3
RV3 ${ }_{\text {S }} 30$	0.07 to 0.7	0.14 to 1.4	0.21 to 2.1

RV3 3^{S} series

Internal structure and parts list

- RV3D30

No.	Part name	Material	No.	Part name	Material
1	Shoe sealant	Nitrile rubber	7	Body B	Aluminum alloy
2	Shoe	Resin	8	O-ring	Nitrile rubber
3	Vane shaft	Steel + resin + nitrile rubber	9	O-ring	Nitrile rubber
4	Bearing	Sintering oil impregnated material	10	O-ring	Nitrile rubber
5	Mounting bolt	Steel	11	Plate	Steel
6	Body A	Aluminum alloy	12	Stopper pin	Steel

[^1]
Compact/standard

Dimensions
CAD

- RV3 ${ }^{s} 1$

Oscillating origin 45°

- S type
(Axial port position)
\square Oscillating origin 90°

LCM
LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK
JSK/M2
JSG
JSC3/SC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
NechndChuk
ShkAbs
FJ
FK
SpdContr
Ending

Dimensions

- RV3S3 CAD

Radial lead wire

Compact/standard

Dimensions

- RV3S 10 CAD

■ Oscillating origin 45°

- S type
(Axial port position)

- RV3S 10 -*-SR(U)

\square Axial lead wire

Radial lead wire

RV3 ${ }_{\text {D }}^{\text {Series }}$

Dimensions

- RV3S 20 CAD

RV3S $20-*-S R(U)$
Axial lead wire

\square Radial lead wire

RV3 ${ }_{\text {DSeries }}^{\text {S }}$

Compact/standard

Dimensions

- RV3 ${ }_{D}^{S} 30$ CAD

$R V 3_{D}^{S} 30-*-S R(U)$
- Axial lead wire

USC
UB

Options/accessories

Flange bracket/foot bracket

How to order

- Flange bracket

Model - FA
Flange bracket

Model	Compatibility
RVS1	RV3 $_{5}^{\mathrm{S}} 1$
RVS3	$\mathrm{RV}_{5}^{\mathrm{S}} 3$
RVS10	$\mathrm{RV3}_{\mathrm{D}}^{\mathrm{S} 10}$
RVS20	$\mathrm{RV}_{\mathrm{D}}^{\mathrm{S}} 20$
RVS30	$\mathrm{RV}_{\mathrm{D}}^{\mathrm{S}} 30$

Dimensions

```
RVS1-FA Material: Steel O RVS1-LS
RVS1-FA \(\quad\) Material: Steel
Zinc chromate treatment
```

Weight: 0.01 kg

- RVS3-FA

Weight: 0.03 kg

Model	LS
Moot bracket	
Model	Compatibility
RVS1	$R V 3_{D}^{S} 1$
RVS3	$R V 3_{D}^{S} 3$
RVS10	$R V 3_{D}^{S} 10$
RVS20	$R V 3_{D}^{S} 20$
RVS30	$R V 3_{D}^{S} 30$

- RVS3-LS

Material: Steel

Zinc chromate treatment

Weight: 0.04 kg

Material: Steel
Zinc chromate treatment

Options/accessories

Flange bracket/foot bracket dimensions

LC

LMB| LML |
| :--- |
| HCM |

Dimensions
The following keys are attached with the rotary actuator with keyway.

- JIS B1301 parallel key bxhx double round S45C

Specifications

Item	RV3S ${ }_{\text {w }}$								
Size	10			20			30		
Effective torque $\mathrm{N} \cdot \mathrm{m}$	0.98			1.70			3.19		
Actuation	Single vane								
Working fluid	Compressed air								
Max. working pressure $\quad \mathrm{MPa}$	0.7 ($\approx 100 \mathrm{psi}, 7 \mathrm{bar}$)								
Min. working pressure $\quad \mathrm{MPa}$	0.2 ($29 \mathrm{psi}, 2 \mathrm{bar}$)								
Proof pressure MPa	1.05 ($\sim 150 \mathrm{psi}, 10.5 \mathrm{bar}$)								
Ambient temperature ${ }^{\circ} \mathrm{C}$	$-5\left(23^{\circ} \mathrm{F}\right)$ to $50\left(122^{\circ} \mathrm{F}\right)^{3}$								
Port size	M5			Rc1/8					
Oscillating angle tolerance	90_{0}^{+4}	180_{0}^{+4}	270_{0}^{+4}	90_{0}^{+4}	180_{0}^{+4}	$27{ }_{0}^{+4}$	90_{0}^{+3}	180^{+3}	270_{0}
Oscillating origin	45, 90		45	45, 90		45	45		
Allowable absorbed energy ${ }^{* 1} \mathrm{~mJ}$	3			15			25		
Max. operating frequency ${ }^{2}$ cycle/min	240	150	90	210	120	84	180	90	60
Volumetric capacity cm^{3}	9.8		12	17		21	37		43
Allowable radial load N	50			300			400		
Allowable thrust load N	4			25			30		
Weight kg	0.28			0.37			0.59		0.58
Switch unit weight $\quad \mathrm{kg}$	0.04			0.05			0.05		
Lubrication	Not required (use turbine oil ISO VG32 if necessary for lubrication)								

Item	RV3D ${ }_{\text {w }}$		
Size	10	20	30
Effective torque *1 $\mathrm{N} \cdot \mathrm{m}$	2.11	3.88	7.70
Actuation	Double vane		
Working fluid	Compressed air		
Max. working pressure $\quad \mathrm{MPa}$	0.7 ($\sim 100 \mathrm{psi}, 7 \mathrm{bar}$)		
Min. working pressure $\quad \mathrm{MPa}$	0.2 ($29 \mathrm{psi}, 2 \mathrm{bar}$)		
Proof pressure $\quad \mathrm{MPa}$	1.05 ($\approx 150 \mathrm{psi}, 10.5 \mathrm{bar}$)		
Ambient temperature ${ }^{\circ} \mathrm{C}$	$-5\left(23^{\circ} \mathrm{F}\right)$ to $50\left(122^{\circ} \mathrm{F}\right)^{3}$		
Port size	M5	Rc1/8	
Oscillating angle tolerance	90^{+4}		90^{+3}
Oscillating origin	45		
Allowable absorbed energy ${ }^{11} \mathrm{~mJ}$	3	15	25
Max. operating frequency ${ }^{\text {2 }}$ cycle/min	240	210	180
Volumetric capacity cm^{3}	8.1	15	34
Allowable radial load N	50	300	400
Allowable thrust load N	4	25	30
Weight kg	0.28	0.38	0.60
Switch unit weight kg	0.04	0.05	0.05
Lubrication	Not required (use turbine oil ISO VG32 if necessary for lubrication)		

[^2]Specifications
Valve specifications

Item	Specifications (4KB1 Series)			
Rated voltage	V	100 VAC(50/60 Hz)	200 VAC(50/60 Hz)	24 VDC
Starting current	A	$0.056 / 0.044$	$0.034 / 0.026$	
Holding current	A	$0.028 / 0.022$	$0.017 / 0.013$	1.8
Power consumption W	$1.8 / 1.4$	$2.1 / 1.6$	$\pm 10 \%$	
Voltage fluctuation range	Class B molded coil			
Thermal class				

1 : 100 VAC and 200 VAC are available with 110 VAC and 220 VAC $(60 \mathrm{~Hz})$
*2 : Refer to "Pneumatic Valves (CB-023SA)" for details on valves.
Switch specifications

Item	Proximity switch
	SR-*(-U)
Applications	For programmable controller/relay/IC circuit/compact solenoid valve
Output method	NPN output
Power supply voltage	5 VDC to 30 VDC
Load voltage/current	5 to 30 VDC, 200 mA or less
Current consumption	20 mA or less with 24 VDC
Internal voltage drop	1.5 V or less
Indicator lamp	LED (Lit when ON)
Leakage current	$10 \mu \mathrm{~A}$ or less
Lead wire length	1 m (oil resistant vinyl cabtyre cable 4-conductor 0.2 mm ${ }^{2}$)
Shock resistance	$490 \mathrm{~m} / \mathrm{s}^{2}$
Insulation resistance	No failure after 1 minute of $1,000 \mathrm{VAC}$ application.
Withstand voltage	5 to $60^{\circ} \mathrm{C}$
Ambient temperature	IEC standards IP67, JIS C0920 (water tight)
Degree of protection	

* mark indicates a rotary actuator size. $(10,20,30)$

LCM
LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK*
JSK/M2
JSG
JSC3/SC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
MechndChuk
ShkAbs
FJ
FK
SpdContr
Ending

How to order

C Nominal size

C Nominal size

		A Model No.	
		Single vane mechanism	Double vane mechanism
		RV3S	RV3D
Code	Description		
B Valve			
V	Single solenoid	\bullet	\bullet
W	Double solenoid	\bullet	\bullet
C Nominal size			
10	Effective torque 0.5 MPa	$0.98 \mathrm{~N} \cdot \mathrm{~m}$	$2.11 \mathrm{~N} \cdot \mathrm{~m}$
20		$1.70 \mathrm{~N} \cdot \mathrm{~m}$	$3.88 \mathrm{~N} \cdot \mathrm{~m}$
30		$3.19 \mathrm{~N} \cdot \mathrm{~m}$	$7.7 \mathrm{~N} \cdot \mathrm{~m}$

D Oscillating angle			
90	90°	\bullet	\bullet
$\mathbf{1 8 0}$	180°	\bullet	
270	270°	\bullet	

E Oscillating origin

Nominal size		10	20	30	10	20	30
45	45°	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
90	90° (excluding oscillating angle 270°)	\bullet	\bullet				
F Valve voltage							
1	100 VAC		\bullet			\bullet	
2	200 VAC		\bullet			\bullet	
3	24 VDC		\bullet			\bullet	

[Example of model No.]
RV3SV10-90-45-1-SR-U-LS

Model: Compact rotary actuator with valve

Model No : RV3S
B Valve
C) Size
: Single solenoid
45° 100 VAC
F Valve voltage
100 VAC
(G) Switch
\boldsymbol{H} Option

With foot bracket
A. Precautions for model No. selection

F Valve voltage
*1:The mounting bracket (FA, LS) is attached at shipment.
Refer to pages 1348 and 1349 for dimensions.

- How to order switch unit

 origin when the valve turns OFF.

Dimensions

CAD

- RV3 $3_{\text {Sw }}^{\text {SV }} 10, ~ R V 33_{b w}^{\text {SV }} 20, ~ R V 33_{b w}^{\text {SV }} 30$

Single solenoid Double solenoid
$\mathrm{ON} \rightarrow$ A direction B solenoid $\mathrm{ON} \rightarrow$ A direction
OFF $\rightarrow B$ direction Assolenoid $\mathrm{ON} \rightarrow \mathrm{B}$ direction

The key is attached. Refer to page 1349 fo the key dimensions.

* The detailed dimensions for each body follow RV3 ${ }_{\mathrm{D}}^{\mathrm{S}} 10, \mathrm{RV} 3 \mathrm{~S}_{\mathrm{D}}^{\mathrm{S}} 20$ and RV3 $\mathrm{S}_{\mathrm{D}} 30$.

Code Model No.	A	B	C	D	E	F	G	H	J	K	L	M	N	P	Q	R	S	T	U
RV3 ${ }_{\text {DW }}^{\text {SV }} 10$	42.5	73	10	40	23	6	14	5	2	58.3	26	60	35	M5	37	29.5	13.6	13.6	13.6
RV3 ${ }_{\text {DW }} 20$	49.5	93.5	10	55	28.5	8	16	5.5	2	65.2	26	60	37	Rc1/8	40.4	32.9	16.2	23.2	23.2
RV3 ${ }_{\text {DW }} \mathbf{S V}$	64	105	13.5	60	31.5	10	20	5.5	2.5	80	26	60	44	Rc1/8	48	40.5	16.2	24.7	18.7

Compact rotary actuator with vane mechanism/angle variable

RV3s ${ }^{\mathrm{s}}$ A Series

Torque size: 3/10/20/30
Oscillating angle: Angle specification
JIS symbol

Specifications

- Single vane mechanism

Item	RV3SA			
Size	3	10	20	30
Effective torque $\quad \mathrm{N} \cdot \mathrm{m}$	0.31	0.98	1.70	3.19
Actuation	Single vane			
Working fluid	Compressed air			
Max. working pressure MPa	0.7 ($\sim 100 \mathrm{psi}, 7 \mathrm{bar}$)		1.0 ($\approx 150 \mathrm{psi}, 10 \mathrm{bar}$)	
Min. working pressure $\quad \mathrm{MPa}$	0.2 ($29 \mathrm{psi}, 2 \mathrm{bar}$)			
Proof pressure MPa	1.05 ($\sim 150 \mathrm{psi}, 10.5 \mathrm{bar}$)		1.5 ($\approx 220 \mathrm{psi}, 15 \mathrm{bar}$)	
Ambient temperature $\quad{ }^{\circ} \mathrm{C}$	$-5\left(23^{\circ} \mathrm{F}\right)$ to $80\left(176{ }^{\circ} \mathrm{F}\right)^{* 4}$			$-5\left(23^{\circ} \mathrm{F}\right)$ to $60\left(140^{\circ} \mathrm{F}\right)$
Port size	M5			Rc1/8
Oscillating angle setting range ${ }^{\circ}$	30 to 180			30 to 270
Oscillating origin ${ }^{\circ}$	90			45
Allowable absorbed energy ${ }^{2} \mathrm{~mJ}$	1	2	3	7
Max. operating frequency ${ }^{* 3}$ cycle/min	150	150	120	90
Volumetric capacity cm^{3}	3.3	9.8	18	43
Allowable radial load $\quad \mathrm{N}$	40	50	300	400
Allowable thrust load N	4.0		25	30
Weight kg	0.085	0.17	0.28	0.51
Switch unit weight $\quad \mathrm{kg}$	0.06	0.06	0.07	0.07
Lubrication	Not required (use turbine oil ISO VG32 if necessary for lubrication)			

- Double vane mechanism

Item	RV3DA			
Size	3	10	20	30
Effective torque $\quad \mathrm{N} \cdot \mathrm{m}$	0.71	2.11	3.88	7.7
Actuation	Double vane			
Working fluid	Compressed air			
Max. working pressure MPa	0.7 ($\sim 100 \mathrm{psi}, 7 \mathrm{bar}$)		1.0 ($\approx 150 \mathrm{psi}, 10 \mathrm{bar}$)	
Min. working pressure $\quad \mathrm{MPa}$	0.2 ($29 \mathrm{psi}, 2 \mathrm{bar}$)			
Proof pressure MPa	1.05 ($\sim 150 \mathrm{psi}, 10.5 \mathrm{bar}$)		1.5 ($220 \mathrm{psi}, 15 \mathrm{bar}$)	
Ambient temperature $\quad{ }^{\circ} \mathrm{C}$	$-5\left(23^{\circ} \mathrm{F}\right)$ to $80\left(176^{\circ} \mathrm{F}\right)^{* 4}$			$-5\left(23^{\circ} \mathrm{F}\right)$ to $60\left(140^{\circ} \mathrm{F}\right)$
Port size	M5			Rc1/8
Oscillating angle setting range	30 to 90			
Oscillating origin	45			
Allowable absorbed energy *2 mJ	1	2	3	7
Max. operating frequency ${ }^{* 3}$ cycle/min	240	240	180	180
Volumetric capacity cm^{3}	2.8	8.1	15	34
Allowable radial load N	40	50	300	400
Allowable thrust load N	4.0		25	30
Weight kg	0.087	0.18	0.29	0.53
Switch unit weight kg	0.06	0.06	0.07	0.07
Lubrication	Not required (use turbine oil ISO VG32 if necessary for lubrication)			

1 : The allowable absorbed energy differs from the compact rotary actuator RV3 Series.
*2 : Calculate the allowable energy with allowable inertia energy of the shaft of the rotary actuator as follows.
(Allowable energy) $\geq 1 / 21 \omega^{2} \times 10^{3}$ (refer to page 1398 for details.)
*3 : The max. operating frequency is at a supply pressure of 0.5 MPa [without load].
*4:5 to $60^{\circ} \mathrm{C}$ when switch is provided.
*5: A key is attached with the rotary actuator with keyway.
*6 : Contact CKD for products other than standard specifications.

Specifications/operational principle

External stopper specifications

Item	RV3SA3	RV3SA10	RV3SA20	RV3SA30	RV3DA3	RV3DA10	RV3DA20	RV3DA30
Min. setting angle ${ }^{\circ}$	30							
Max. setting angle		180		270			0	
Angle setting pitch	15							
Stopper fine adjustment range for angle setting ${ }^{\circ}$	-9 to +6							
Stopper fine adjustment range for reference point ${ }^{\circ}$	± 3				-1 to +3	± 3		
Stopper fine adjustment range for angle setting at max. setting angle ${ }^{\circ}$		-9 to +6		-9 to +3	-9 to +1	-9 to +3		

Oscillating angle setting range and oscillating origin

Model No.		Oscillating angle setting range	Oscillating origin
Single vane	RV3SA3	30 to 180°	90°
	RV3SA10		
	RV3SA20		
	RV3SA30	30 to 270°	45°
Double vane	RV3DA3	30 to 90°	45°
	RV3DA10		
	RV3DA20		
	RV3DA30		

Switch specifications

Item	Proximity switch
	FR-*(-U)
Applications	Programmable controller, relay, IC circuit
Output method	NPN output
Power supply voltage	5 VDC to 30 VDC
Load voltage	5 VDC to 30 VDC
Load current	5 mA to 200 mA
Current consumption	$24 \mathrm{VDC}: 20 \mathrm{~mA}$ or less, 12 VDC: 10 mA or less, 5 VDC: 4 mA or less
Internal voltage drop	1.5 V or less
Indicator lamp	LED (Lit when ON)
Leakage current	$10 \mu \mathrm{~A}$ or less
Lead wire length	1.0 m (oil resistant black 3-conductor cable)
Shock resistance	490 m/s ${ }^{2}$
Insulation resistance	$100 \mathrm{M} \Omega$ or more with 500 V megger
Withstand voltage	No failure after 1 minute of 1,500 VAC application.
Ambient temperature	5 to $60^{\circ} \mathrm{C}$
Degree of protection	IEC standards IP67, JIS C0920 (water tight)

* mark indicates rotary actuator size. (3, 10, 20, 30)

Operational principle

Single vane

1. Configured with vane sliding on the internal body surface, integrated shaft, and shoe (stopper).
2. Air from port A pushes vane, rotates shaft, and generates torque.
3. Air in opposite chamber is exhausted from port B, and the shaft rotates clockwise.
4. Vane stops when it contacts the shoe.
5. Air supply from port B causes counterclockwise rotation in the same manner.

- Double vane

1. Configured with two vanes sliding on the internal body surface, integrated shaft, and two shoes (stoppers).
2. Air from port A pushes vane, goes through passage in shaft, pushes another vane, turns shaft, and finally generates torque.
3. Rotates in the same way as the single vane.

CKD

RV3 ${ }_{\text {Dis }}^{\text {s }}{ }_{\text {series }}$

How to order

- Compact rotary actuator (angle variable) RV3*A

RV3SA 3-0 -90 - FR-U FA
(A) Model No.

© Os , *
1, *2

		A Model No.	
		Single vane mechanism	Double vane mechanism
		RV3SA	RV3DA
Code	Description		
B Nominal size			
3	Effective torque 0.5 MPa	$0.31 \mathrm{~N} \cdot \mathrm{~m}$	$0.71 \mathrm{~N} \cdot \mathrm{~m}$
10		$0.98 \mathrm{~N} \cdot \mathrm{~m}$	$2.11 \mathrm{~N} \cdot \mathrm{~m}$
20		$1.70 \mathrm{~N} \cdot \mathrm{~m}$	$3.88 \mathrm{~N} \cdot \mathrm{~m}$
30		$3.19 \mathrm{~N} \cdot \mathrm{~m}$	$7.70 \mathrm{~N} \cdot \mathrm{~m}$
C Oscillating angle			
0	Without angle specification	\bullet	\bullet
Neeldelange	With angle specification	\bullet	\bullet

D Oscillating origin

Nominal size		$\mathbf{3}$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$	$\mathbf{3}$	$\mathbf{1 0}$	$\mathbf{2 0}$	$\mathbf{3 0}$
$\mathbf{4 5}$	45°				\bullet	\bullet	\bullet	\bullet	\bullet
90	90°	\bullet	\bullet	\bullet					

*1 : If "Without angle setting" is selected, a reference point stopper is mounted and an angle setting stopper is attached. Mount the stopper if necessary.
*2 : Since the required angle is set to an approximate angle from the oscillating origin, always adjust the final angle with the fine adjust screw before starting use.
*3: Two switches are attached.
*4 : If the type with switch is selected, a switch unit is attached at shipment. Adjust the external stopper and then install the switch.
*5 : If the type with switch is selected, the " K " protective cover cannot be selected.
*6 : The mounting bracket (FA, LS) is attached at shipment. Refer to pages 1348 and 1349 for dimensions.
[Example of model No.]

RV3SA3-0-45-FR-FA

Model: Compact rotary actuator angle variable

A Model No.	$:$ RV3SA
B Size	$: 3$

B Size : 3
C Oscillating angle : Without angle specification
(D) Oscillating origin : 90°

E Switch: With axial lead wire switch
\boldsymbol{F} Option : With flange bracket

- How to order switch unit

RV3S $=$ AR-3 Model (U)
[Example of model No.]

RV3S-FR-3-U

Code	Description
A Model	
FR-3	Applicable actuator: RV3 ${ }_{\text {d }}{ }^{\text {S }}$ 3
FR-10	Applicable actuator: RV3 ${ }_{\text {S }}$ A10
FR-20	Applicable actuator: $\mathrm{RV} 3{ }_{\mathrm{S}} \mathrm{A} 20$
FR-30	Applicable actuator: RV3 ${ }_{\text {S }}$ A30
B Lead wire direction	
Blank	With axial lead wire switch
U	With radial lead wire switch

Model: Switch unit angle variable
A Model

- For RV3SA3

B Lead wire direction: Radial lead wire

Oscillating origin position/oscillating time setting
Oscillating origin position

- Oscillating origin 90° RV3SA3 to 20

- Oscillating origin 45° RV3SA30

RV3DA3 to 30

Oscillating time setting

1. Use an oscillating time within the specified range of the table below. If this range is exceeded, smooth operation cannot be obtained due to stick slip, etc.

UCAC2
CAC-N

- RV3 ${ }_{\mathrm{D}}^{\mathrm{s}} \mathrm{A} 20$

RV3 ${ }_{\text {Dis }}^{\text {series }}$

Output table (effective torque)

Output table (effective torque)
Unit: $\mathrm{N} \cdot \mathrm{m}$

Working pressure (MPa)		0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Model No.										
Single vane	RV3SA3	0.1	0.17	-0.24	-0.31	0.38	0.45	-	-	-
	RV3SA10	0.35	0.56	0.75	0.98	1.2	1.39	-	-	-
	RV3SA20	0.59	0.95	1.33	1.7	2.1	2.49	2.87	3.26	3.68
	RV3SA30	1.1	1.8	2.5	3.19	4.1	4.8	5.8	6.5	7.2
Double vane	RV3DA3	0.25	0.39	0.54	0.71	0.86	1.01	-	-	-
	RV3DA10	0.76	1.17	1.62	2.11	2.54	3.03	-	-	-
	RV3DA20	1.4	2.22	3.06	3.88	4.7	5.53	6.33	7.17	8.07
	RV3DA30	2.7	4.4	6	7.7	9.5	11.2	12.99	14.8	16.6

- RV3SA*

- RV3SDA*

* The internal structure of the rotary actuator body is the same as the compact rotary actuator RV3S.

Refer to page 1342 for details.

No.	Part name	Material	Remarks	No.	Part name	Material	Remarks
1	Stopper L	Steel	Reference point	5	Finger mounting bolt	Steel	
2	Lock nut	Steel		6	Stopper R	Steel	Angle setting
3	Fine adjusting screw	Steel		7	Stopper mounting bolt	Steel	
4	Finger	Steel					

- RV3 ${ }_{D}^{\text {S }}$ A3-*-K (with protective cover)

Compact/angle variable

Dimensions

- RV3SA10 CAD

- RV3 ${ }_{D}^{\text {S A10 }}$-*-K (with protective cover)

RV3 ${ }_{\mathrm{D}}^{\mathrm{S}} \mathrm{A}_{\text {series }}$

LCR LCG LCW LCX STM STG STSISTL STR2 UCA2
ULK*
JSK/M2
JSG
JSC3JSC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL LN
Hand
Chuk MecthndChuk ShkAbs FJ FK SpdContr Ending

Dimensions

* The key is attached. Refer to page 1349 for the key dimensions.
- RV3DA20

- RV3 ${ }_{\mathrm{D}}^{\mathrm{S}} \mathrm{A} 20-*-\mathrm{K}$ (with protective cover)

Compact/angle variable

Dimensions

- RV3SA30 CAD

* The key is attached. Refer to page 1349 for the key dimensions.

- RV3DA30

LCM
LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK*
JSK/M2
JSG
JSC3ISC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
MeChndChuk
ShkAb
FJ
Ending

- RV3 ${ }_{D}^{S} A 30-*-K$ (with protective cover)

Specifications

- Single vane mechanism

Item			Single vane mechanism RV3S														
Size			50			150				300				800			
Effective torque $\mathrm{N} \cdot \mathrm{m}$			4.7			14.7				27.9				102			
Actuation			Single vane														
Working fluid			Compressed air														
Max. working pressure MPa			1.0 ($\approx 150 \mathrm{psi}, 10 \mathrm{bar}$)														
Min. working pressure MPa			0.2 ($\approx 29 \mathrm{psi}, 2 \mathrm{bar}$) *1														
Proof pressure MPa Ambient temperature ${ }^{\circ} \mathrm{C}$			1.5 ($\approx 220 \mathrm{psi}, 15 \mathrm{bar}$)														
			$5\left(41^{\circ} \mathrm{F}\right)$ to $60\left(140^{\circ} \mathrm{F}\right)$														
Port size			Rc1/8			Rc1/4				Rc3/8				Rc1/2			
Oscillating angle tolerance Degree			90_{0}^{+3}	$180_{0}^{+3} 270{ }_{0}$	280^{+3}	90_{0}	180 ${ }_{0}$		280+3	90^{+3}	180+3 ${ }_{0}$		$280{ }_{0}^{3}$				
Oscillating origin Degree				45	40		45		40		45		40	45			40
Allowable absorbed energy ${ }^{\text {2 }} \mathrm{mJ}$			49			225				1078				3820			
Max. operating freq ${ }^{\text {3 }}$ cycle/min			180 90 60			120	80	50		90	60	40		70	45	30	
Volumetric capacity cm^{3}			51 61 62			146		179	185	244	283	352	365	754	869	1036	1046
Allowable L-shaped load N			588			1176				1960				4900			
Allowable thrust load N			44.1			88.2				147				490			
Weight kg			0.82	0.79 0.73	0.7	2.0	1.9	1.7	1.6		3.7		3.6	12.7	12.2	11.2	11.0
\%요 Without shock absorber			0.1			0.14				0.18				0.28			
\pm		90°	0.16			0.27				0.50				2.9			
	With	100°	0.15			0.26				0.49				2.8			
容	shock	180°	0.16			0.27				0.50				2.9			
든	absorber	270°	0.14			0.23				0.41				2.7			
$\begin{gathered} \tilde{3} \\ 0 \end{gathered}$		280°	0.14			0.22				0.39				2.6			
Lubrication			Not required (use turbine oil class 1 ISO VG32 if necessary for lubrication)														

Item			Double vane mechanism RV3D							
Size			50		150		300		800	
Effective torque $\mathrm{N} \cdot \mathrm{m}$			10.1		34.3		66.6		206	
Actuation			Double vane							
Working fluid			Compressed air							
Max. working pressure MPa			1.0 ($\approx 150 \mathrm{psi}, 10 \mathrm{bar}$)							
Min. working pressure MPa			0.2 ($\approx 29 \mathrm{psi}, 2 \mathrm{bar}){ }^{\text {*1 }}$							
Proof pressure MPa			1.5 ($\approx 220 \mathrm{psi}, 15 \mathrm{bar}$)							
Ambient temperature ${ }^{\circ} \mathrm{C}$			$5\left(41^{\circ} \mathrm{F}\right)$ to $60\left(140^{\circ} \mathrm{F}\right)$							
Port size			Rc1/8		Rc1/4		Rc3/8		Rc1/2	
Oscillating angle tolerance Degree			90^{+3}	$100{ }^{+3}$	90^{+3}	$100{ }^{+3}$	$90 \begin{gathered}\text { +3 } \\ 0\end{gathered}$	$100{ }_{0}^{+3}$	90^{+3}	$100{ }_{0}^{+3}$
Oscillating origin Degree			45	40	45	40	45	40	45	40
Allowable absorbed energy ${ }^{2} \mathrm{~mJ}$			49		225		1078		3820	
Max. operating frequency ${ }^{3}$ cycle/min			180		120		90		90	70
Volumetric capacity cm^{3}			42	43	127	123	244	271	754	774
Allowable L-shaped loadN			588		1176		1960		4900	
Allowable thrust load N			44.1		88.2		147		490	
Weight kg			0.82	0.8	2.0	1.9	4.3	4.1	12.7	12.5
	Without shock	absorber	0.1		0.14		0.18		0.28	
	With shock absorber	90°	0.16		0.27		0.50		2.9	
		100°	0.15		0.26		0.49		2.8	
		180°	0.16		0.27		0.50		2.9	
		270°	0.14		0.23		0.41		2.7	
		280°	0.14		0.22		0.39		2.6	
Lubrication			Not required (use turbine oil ISO VG32 if necessary for lubrication)							

${ }^{*} 1$: The min. working pressure is 0.3 MPa when the optional shock absorber is selected.
*2 : Calculate the allowable energy with allowable inertia energy of the shaft of the rotary actuator as follows. [Allowable energy] \geq $(1 / 2) \times \mid \times \omega^{2} \times 10^{3}$ (refer to page 1398 for details).
If the formula above is not
satisfied, problems such as broken shafts may be caused. *3 : The max. operating frequency is at a supply pressure of 0.5 MPa [without load].
*4: A key is attached with the rotary actuator with keyway.
*5 : Contact CKD for products other than standard specifications.
*6 : The switch unit weight is the weight of two switches.

Switch specifications

Item	Proximity 2-wire	Proximity 3-wire	Reed 2-wire	
	M2V	M3V	MOV	M5V
Applications	Dedicated for programmable controller	For programmable controller, relay, IC circuit, compact solenoid valve	For programmable controller, relay	For programmable controller, relay, IC circuit (without indicator lamp), serial connection
Output method	-	NPN output	-	
Power supply voltage	-	4.5 to 28 VDC	-	
Load voltage/current	10 to 30 VDC , 5 to 30 mA	30 VDC or less, 100 mA or less	5 to 50 mA with $12 / 24 \mathrm{VDC}$, 7 to 20 mA with 110 VAC	50 mA or less with 5/12/24 VDC, 20 mA or less with 110 VAC
Indicator	LED (Lit when ON)		LED (Lit when ON)	No indicator lamp
Leakage current	1 mA or less	$10 \mu \mathrm{~A}$ or less	0 mA	
Weight g	$1 \mathrm{~m}: 22$ 3 m:57 $5 \mathrm{~m}: 93$			

LCM
LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK*
JSK/M2
JSG
JSC3ISC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
MechndChuk
ShkAbs
FJ
FK
SpdContr
Ending

How to order

- Large rotary actuator (standard) RV3*

A Model No.

Single vane mechanism Double vane mechanism

*1:Refer to the table below for the relation of the oscillating angle and oscillating origin. Relation of oscillating angle and oscillating origin

D) Oscillating origin C) Oscillaing angle	40°	45°
90°		-
100°	-	
180°		-
270°		-
280°	-	

*2 : The mounting bracket (FA, LS) is included at shipment. Refer to page 1371 for dimensions.
*3 : Refer to page 1382 for shock absorber (C).
*4 : The switch cannot be installed with the oscillating angle 280 shock absorber.
[Example of model No.]
RV3S50-90-45-M2V-D-C
Model: Large rotary actuator
A Model No. $:$ RV3S
B Size $: 50$
C Oscillating angle: 90°
(D) Oscillating origin: 45°
(E) Switch
Switch quantity
Option
: M2V switch, lead wire length 1 m
With clockwise rotation detection 1 piece
: With shock absorber
Oscillating origin position
Oscillating origin 45° RV3*50 to 800

Oscillating origin
40° RV3*50 to 800

*1 : Tolerance of oscillating origin is based on mounting screw position.
*2 : Deflection of torsion angle between keyway on longer axis side (or cut plane) and square on shorter axis side within 1.5°

How to order

How to order switch unit

Switch unit

LCM
LCR
LCG
LCW
LCX
STM
STG
STSISTL
STR2
UCA2
ULK
JSK/M2
JSG
JSC3ISC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3 ${ }^{*}$
NHS
HRL
LN
Hand
Chuk
MeshdrdChu
ShkAbs
FJ
FK
SpdContr
Ending

Output characteristics graph (effective torque)

- RV3 ${ }_{D} 50 / 150 / 300 / 800$

Output table (effective torque)
Unit: $N \cdot m$

Working pressure (MPa)		0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Model No.										
Single vane	RV3S50	1.25	2.59	-3.69	-4.79	5.9	-7	8.29	9.5	10.6
	RV3S150	5.5	8.5	11.5	15	18	21	24	27.3	30.5
	RV3S300	10.5	16.5	22.5	28.5	34.5	40.5	46	51.8	57.5
	RV3S800	37.8	59.1	81	102	123	144	166	186	205
Double vane	RV3D50	3.3	5.79	8.29	10.4	12.8	15.1	17.6	20.1	22.5
	RV3D150	12.5	19	27	35	41.5	48	55	62	69
	RV3D300	25.5	39	54	68	83	97	110	124	137
	RV3D800	77.4	120	161	206	247	288	332	371	411

Oscillating time setting

1. Use an oscillating time within the specified range of the table below. If this range is exceeded, smooth operation cannot be obtained due to stick slip, etc.
(s)

Model No.	Oscillating angle				
	90°	100°	180°	270°	280°
RV3 ${ }_{\text {S }} 50$	0.08 to 0.8	0.09 to 0.9	0.16 to 1.6	0.24 to 2.4	0.25 to 2.5
RV3 ${ }_{\text {S }} 150$	0.12 to 1.2	0.13 to 1.3	0.24 to 2.4	0.36 to 3.6	0.37 to 3.7
RV3 ${ }_{\text {D }} 300$	0.16 to 1.6	0.17 to 1.7	0.32 to 3.2	0.48 to 4.8	0.49 to 4.9
RV3*800	0.22 to 2.2	0.24 to 2.4	0.44 to 4.4	0.66 to 6.6	0.68 to 6.8

- RV3S50/150/300
- RV3S800/RV3SH800

RV3D50/150/300

- RV3D800/RV3DH800

No.	Part name	Material	Remarks	No.	Part name	Material	Remarks
1	Body A	Aluminum casting		7	Damper	Resin	
2	Body B	Aluminum casting		8	O-ring	Nitrile rubber	
3	Vane shaft	Steel		9	Bearing	Sinteringoil impregnated material	
4	Vane seal (vane shaft)	Nitrile rubber		10	O-ring	Nitrile rubber	
5	Shoe	Zinc alloy die-casting		11	Bearing	Stee	
6	Shoe sealant	Nitrile rubber		12	Cover plate	Steel	

Note: The vane seal and vane shaft are integrated.
Refer to page 1393 for the repair parts list.

Large/standard

* The key is attached. Refer to page 1371 for the key dimensions.

$\begin{array}{\|l\|} \hline \text { Code } \\ \hline \text { Model No. } \\ \hline \end{array}$	A	B	C	D	E	F	G	H	J	K	L	M	N	P	Q	R	S	T	Key groove WxDxL	U	W	V	Z	X	X'	Y	Y'
RV3s ${ }_{\text {D }} 50$	79	145	19.5	86	39.5	12	25	29	2.5	10	13	36	16	Rc1/8	45	M6 Depth 9	5	28	$4 \times 2.5 \times 20$	57	44	68	58	20	5	11	3
RV3 ${ }_{\text {D }} 150$	110	180	23.5	103	53.5	17	30	34.5	3	13	16	51	24	Rc1/4	70	$\begin{gathered} \text { M8 } \\ \text { Depth } 12 \end{gathered}$	5	34	$5 \times 3 \times 36$	85	61	97	85.2	23.5	6	10.5	5
RV3 ${ }_{\text {D }} 300$	141.5	220	30	125	65	25	45	41.5	3.5	19	22	66	32	Rc3/8	80	$\begin{gathered} \text { M10 } \\ \text { Depth } 15 \end{gathered}$	5	42	$7 \times 4 \times 40$	98.5	78	125	110	27.5	8	13	4.5

With switch

With switch, shock absorber

* The key is attached. Refer to page 1371 for the key dimensions.

$\begin{aligned} & \hline \text { Code } \\ & \hline \text { Model No. } \end{aligned}$	A	B1	B2	C1	C2	D	E	F	G	H	J	M	N	P	Q	R	S	T	V	W1	W2	Keyway W x D x L
RV3 ${ }_{\text {D }} 50$	79	157.2	177.2	30.5	50.5	87.2	39.5	12	25	29	2.5	36	16	Rc1/8	45	M6 Depth 9	5	28	54	47	58	$4 \times 2.5 \times 20$
RV3 ${ }_{\text {D }} 150$	110	188.2	214.2	30.5	56.5	104.2	53.5	17	30	34.5	3	51	24	Rc1/4	70	$\begin{array}{\|c\|} \hline \text { M8 } \\ \text { Depth } 12 \\ \hline \end{array}$	5	34	71.5	61	72	$5 \times 3 \times 36$
RV3 ${ }_{\text {D }} 300$	141.5	221.7	253.7	30.5	62.5	126.2	65	25	45	41.5	3.5	66	32	Rc3/8	80	$\begin{array}{c\|} \hline \text { M10 } \\ \text { Depth } 15 \\ \hline \end{array}$	5	42	95	69	88	$7 \times 4 \times 40$

LCM
LCR
LCG

LCW
LCX STM
STG

STS/STL | STR2 |
| :--- |
| UCA2 |

ULK*
JSK/M2
JSG
JSC3/JSC4
USSD
UFCD
USC
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
MFC
BBS
RRC
GRC
RV3*
NHS
HRL LN Hand
Chuk
ShkAbs
FJ
FK
SpdContr
Ending

Dimensions

- RV3 ${ }_{D}^{\text {s }} 800$

Oscillating origin 40°

With switch

With switch, shock absorber

Options/accessories
 Flange bracket/foot bracket

How to order

Model - FA	
	Flange bracket
Model	Compatibility
RVS50	RV3 ${ }_{\text {S }}^{\text {S }} 50$
RVS150	RV3 ${ }_{\text {S }}^{\text {S }} 150$

- Foot bracket	
Model - LS	
	Foot bracket
Model	Compatibility
RVS50	RV3 ${ }_{0}^{\text {S }} 50$
RVS150	RV3 ${ }^{\text {s }} 150$
RVS300	RV3 ${ }_{\text {S }}{ }^{\text {S }} 300$
RVS800	RV3 ${ }_{0}^{5} 800$

Dimensions

Key

Dimensions
The following keys are attached with the rotary actuator with keyway.

- JIS B1301 parallel key $\mathrm{b} \times \mathrm{h} \times \ell$ double round S45CS45C

					Unit: mm	
Model No.	Nominal key	b	h	ℓ	C	R
RV3*50	$4 \times 4 \times 20$	$4{ }_{-0.03}^{0}$	$4{ }_{-0.03}^{0}$	$20_{-0.21}^{0}$	$\begin{gathered} 0.16 \text { to } 0.25 \\ \text { (R0.16 to. } 0.25) \end{gathered}$	2
RV3*150	$5 \times 5 \times 36$	$5{ }_{-0.03}^{0}$	$5{ }_{-0.03}^{0}$	$36{ }_{-0.25}^{0}$	$\begin{aligned} & 0.25 \text { to } 0.40 \\ & (\text { RRO.25 to } 0.40 \end{aligned}$	2.5
RV3*300	$7 \times 7 \times 40$	$7{ }_{-0.036}^{0}$	$7{ }_{-0.036}^{0}$	$40{ }_{-0.25}^{0}$	$0.25 \text { to } 0.40$	3.5
RV3*800	$12 \times 8 \times 40$	$12{ }_{-0.043}^{0}$	$8{ }_{-0.09}^{0}$	$40{ }_{-0.25}^{0}$	0.40 to 0.60	6

Large rotary actuator vane mechanism/with valve

RV3 ${ }_{\text {Dw }}^{\text {sV }}$ Series

Torque size: 50, 150, 300
Oscillating angle: $90^{\circ}, 100^{\circ}, 180^{\circ}, 270^{\circ}, 280^{\circ}$

RoHS

Specifications

	m			Sin	gle va	ne m	echan	ism	RV3S	IRV3	SW			Double	vane	mecha	nism R	3DV/R	V3DW
Size				50			15	50				00			0		50		00
Effe	ective torq	e $\mathrm{N} \cdot \mathrm{m}$		4.7			14	. 7				7.9			. 1		. 3		. 6
Act	ctuation						Single	vane								Doubl	vane		
Wo	rking fluid									ompre	ssed								
Max	x. working pre	sure MPa								(~ 100	psi, 7	bar)							
Min.	working pres	sure MPa								(29 p	psi, 2 b	bar)							*1
Pro	of pressur	MPa							1.05	$\approx 150 \mathrm{p}$	psi, 10.	$5 \mathrm{bar})$							
Amb	bient tempe	ature ${ }^{\circ} \mathrm{C}$							5 (4	${ }^{\circ} \mathrm{F}$) to	50 (12	22 ${ }^{\circ} \mathrm{F}$)							
Por	rt size (suc	tion)		Rc1/8			Rc	1/4				3/8			1/8		1/4		3/8
Por	rt size (exh	aust)		M5											15				
Osci	cillating angle	olerance ${ }^{\circ}$	90+3	$180{ }_{0}^{+3} 270{ }_{0}$	$280+3$	90^{+3}	$180+3$	270 ${ }_{0}$	280 ${ }_{0}$	90_{0}^{+3}	$180{ }_{0}$	$270+3$	$280{ }_{0}$	90_{+0}^{+3}	100_{+0}^{+3}	${ }^{90}+$	$100{ }_{+0}^{+3}$	90_{+0}^{+3}	100_{+0}^{+3}
	cillating ori	gin		45	40		45		40		45		40	45	40	45	40	45	40
Allow	vable absorbed	nergy ${ }^{2} \mathrm{~mJ}$		49			22	25				78			9		25		78
Max.	operaing frequen	ay ${ }^{3}$ cydemin	180	$90 \quad 60$	0	120	80		50	90	60		0		80		20	9	0
Volu	umetric cap	acity cm^{3}		$51 \quad 61$	62		46	179	185	244	283	352	365	42	43	127	123	244	271
Allow	wable L-sha	ped loadN		588			11	76				60			88		76		60
Allo	owable thrus	toad N		44.1			88	. 2				47			4.1		. 2		47
	orporated sole	noid valve		KB119/4KB12					KB219	4KB22				4KB119	4KB129		B219	4KB22	
	eight	kg		. 9 0.84	0.81	2	2	2.0	1.9		4.1		4.0	0.93	0.91	2.3	2.2	4.7	4.5
	Without shock	k absorber		0.1			0.	14				18			. 1		14		18
$\begin{array}{\|c\|c\|} \hline \frac{5}{0} \\ \hline 0 \end{array}$		90°		0.16			0.2	27				58			16				. 50
$\stackrel{0}{3}$	With	100°		0.15			0.2	26				49			15		26		49
容	shock	180°		0.16			0.2	27				50			16				50
ᄃ	absorber	270°		0.14			0.2	. 23				41			14		23		. 41
		280°		0.14			0.2	22				39			14		22		39
	brication		Not	required (use	turbin	oil cla	ass 1 I	SO VG	G32 if n	necessa	ry for	lubrica	tion)	Notrequir	ed (use turb	ine oil 1 SO	VG32ifnec	essara forl	ubication)

*1: The min. working pressure is 0.3 MPa when the optional shock absorber is selected.
*2 : Calculate the allowable energy with allowable inertia energy of the shaft of the rotary actuator as follows.
[Allowable energy] $\geq(1 / 2) \times I \times \omega^{2} \times 10^{3}$ (refer to page 1398 for details). If the formula at left is not satisfied, problems such as broken shafts may be caused.
*3 : The max. operating frequency is at a supply pressure of 0.5 MPa [without load].
*4: A key is attached with the rotary actuator with keyway.
*5 : Contact CKD for products other than standard specifications.
*6 : The switch unit weight is the weight of two switches.

Specifications, operational principle

Valve specifications

Item	Specifications (4K	Series) *2	
Rated voltage *1 V	100 VAC ($50 / 60 \mathrm{~Hz}$)	200 VAC ($50 / 60 \mathrm{~Hz}$)	24 VDC
Starting current A	0.056/0.044	0.028/0.022	0.075
Holding current A	0.028/0.022	0.014/0.011	
Power consumption W	1.8/1.4		1.8
Voltage fluctuation range	$\pm 10 \%$		
Thermal class	Class B molded coil		

*1 : 100 VAC and 200 VAC are available with 110 VAC and 220 VAC (60 Hz)
*2 : Refer to page 1351 for the specifications of the 4KB1 Series.
*3 : Refer to "Pneumatic Valves (CB-023SA)" for details on valves.

Switch specifications

Item	Proximity 2-wire	Proximity 3-wire
	M2V	M3V
Applications	Dedicated for programmable controller	Programmable controller, relay, IC circuit, small solenoid valve
Output method	-_	NPN output
Power supply voltage	-	4.5 to 28 VDC
Load voltage/current	10 to 30 VDC , 5 to 30 mA	30 VDC or less, 100 mA or less
Indicator	LED (Lit when ON)	
Leakage current	1 mA or less	$10 \mu \mathrm{~A}$ or less
Weight g	$1 \mathrm{~m}: 223 \mathrm{~m}: 575 \mathrm{~m}: 93$	
Item	Reed 2-wire	
	M0V	M5V
Applications	For programmable controller, relay	Programmable controller, relay, IC circuit (without indicator lamp), serial connection
Load voltage/current	5 to 50 mA with $12 / 24 \mathrm{VDC}$, 7 to 20 mA with 110 VAC	50 mA or less with $5 / 12 / 24 \mathrm{VDC}$, 20 mA or less with 110 VAC
Indicator	LED (Lit when ON)	No indicator lamp
Leakage current	0 mA	
Weight g	$1 \mathrm{~m}: 223 \mathrm{~m}: 575 \mathrm{~m}: 93$	

LCM
LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK*
JSK/M2
JSG
JSC3/SC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
MechndChuk
ShkAbs
FJ
FK
SpdContr
Ending

 when the solenoid valve turns OFF.
(2) Double solenoid

When the solenoid valve A solenoid
is ON, the vane returns to the oscillating origin position.

When the solenoid valve B solenoid
is ON, the vane moves in the oscillating direction.

The double solenoid valve maintains the self-hold state when both the A solenoid and B solenoid are OFF.

Ending

How to order

- Large rotary actuator (with valve) RV3* ${ }_{w}^{*}$

Code	Description

A Model No.

Single vane mechanism Double vane mechanism

B Valve	
V	Single solenoid
W	Double solenoid

\mathbf{C} Nominal size			
$\mathbf{5 0}$			
$\mathbf{1 5 0}$	Effective torque 0.5 MPa	$4.7 \mathrm{~N} \cdot \mathrm{~m}$	$10.1 \mathrm{~N} \cdot \mathrm{~m}$
$\mathbf{3 0 0}$		$14.7 \mathrm{~N} \cdot \mathrm{~m}$	$34.3 \mathrm{~N} \cdot \mathrm{~m}$
	$27.9 \mathrm{~N} \cdot \mathrm{~m}$	$66.6 \mathrm{~N} \cdot \mathrm{~m}$	

(D) Oscillating angle			
90	90°	\bullet	\bullet
100	100°		\bullet
180	180°	\bullet	
270	270°	\bullet	
280	$280^{\circ}\left(\begin{array}{c}\text { The type with switch i s not available } \\ \text { when the shock absorber is selected. })\end{array}\right.$	\bullet	

E Oscillating origin

40	40°	\bullet	\bullet	
45	45°	\bullet	0	
F Valve voltage				
$\mathbf{1}$	100 VAC	\bullet	\bullet	
$\mathbf{2}$	200 VAC	\bullet	\bullet	
$\mathbf{3}$	24 VDC	\bullet	\bullet	

A Precautions for model No. selection
*1: Refer to the table below for the relation of the
oscillating angle and oscillating origin.
Relation of oscillating angle and oscillating origin

E Oscillating origin	40°	45°
(D) Oscillating angle		
90°		
100°		
180°		
270°		
280°		

*2 : The mounting bracket (FA, LS) is included at shipment. Refer to page 1371 for dimensions.
*3 : Refer to page 1382 for shock absorber (C).
*4 : The switch cannot be installed with the oscillating angle 280 shock absorber.
[Example of model No.]

RV3SV150-90-45-M2V-R-C

Model: Large rotary actuator with valve

[^3]How to order
How to order switch unit

LCM
LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK
JSK/M2
JSG
JSC3/SC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
MechndChuk
ShkAbs
FJ
FK
SpdContr
Ending

RVU50-C-90-M2V-R

Model: Switch unit
A Model
: RV3S/D50
(B) Unit
: With shock absorber
C Oscillating angle: 90°
D Switch model No. : M2V switch, lead wire length 1 m
(E) Switch quantity : With clockwise rotation detection 1 piece

LCM
LCR
LCG
LCW
LCX
STM
STG
STSISL
STR2
UCA2
ULK
JSK/M2
JSG
JSC3ISC4
USSD
UFCD
USC
UB
SBB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
Ueedhrchak
ShkAbs
FJ
FK
SpdContr
Ending

Dimensions

RV3 ${ }_{\text {DW }}^{\text {SV }} 50$
 for the key dimensions.

RV3 ${ }_{\text {DW }}^{\text {SV }} 150 / 300$

$\underbrace{\frac{A}{B}}_{B}$

Single solenoid Double solenoid
 $\mathrm{ON} \rightarrow \mathrm{A}$ direction B solenoid $\mathrm{ON} \rightarrow \mathrm{A}$ direction * The key is attached. Refer to page 1371 OFF \rightarrow B direction Asolenoid $\mathrm{ON} \rightarrow \mathrm{B}$ direction for the key dimensions.

$\begin{aligned} & \hline \text { Code } \\ & \hline \text { Model No. } \end{aligned}$	A	B	C	D	E	F	G	H	J	K	L	M	N	Rc	Rc'	Q	R	S	T	V	W	Key groove WxDxL
RV3*V150	110	180	23.5	103	53.5	17	30	36	3	13	16	79	62	1/4	1/4	70	M8 depth 12	5	41	65	70	$5 \times 3 \times 36$
RV3*V300	141.5	220	30	125	65	25	45	47.5	3.5	19	22	95	72	3/8	1/4	80	M10 depth 15	5	50.5	80	70	$7 \times 4 \times 40$

MEMO

LCM
LCR
LCG
LCW
LCX
STM
STG
STSISTL
STR2
UCA2
ULK
JSKIM2
JSG
SSC3SC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RR3*
NHS
HRL
LN
Hand
Chuk
MeedhrdCuk
ShKAbs
FJ
FK
SpdContr
Ending

Torque size: 50/150/300/800
Oscillating angle: $90^{\circ} / 100^{\circ} / 180^{\circ} / 270^{\circ} / 280^{\circ}$
JIS symbol

Specifications

Item	50	RV3SH/RV3DH		
Size	150	300	800	
Working fluid	Hydraulic fluid			
Max. working pressure MPa	$1.0(\approx 150 \mathrm{psi}, 10 \mathrm{bar})$			
Min. working pressure MPa	$0.2(\approx 29 \mathrm{psi}, 2 \mathrm{bar})$	${ }^{4} 1$		
Proof pressure MPa	$1.5(\approx 220 \mathrm{psi}, 15 \mathrm{bar})$			
Ambient temperature ${ }^{\circ} \mathrm{C}$	$5\left(41^{\circ} \mathrm{F}\right)$ to $60\left(140^{\circ} \mathrm{F}\right)$			

*1 : The min. working pressure is 0.3 MPa when the optional shock absorber is selected.
*2 : Use hydraulic fluid of JIS turbine oil type 1 ISO VG32 or equivalent viscosity for lubricant. However, note that some are inapplicable with flame-resistant hydraulic oil.
Hydraulic fluid of viscosity $40 \mathrm{~mm}^{2} / \mathrm{s}(40 \mathrm{cSt}$) is recommended at working oil temperature.
For oil, use Fuji Kosan/Fukkol Hydrol x 22 or equivalent oil such as MITSUBISHI/Diamond Power Fluid 18, Showa-Shell/SHELL Tellus Oil 22, ESSO/Univis J26, Mobile DTE22, Cosmohydro HV22, JX Nippon Oil \& Energy Corporation/Highlandwide 22 or Idemitsu/Daphne Super Hydro 22 WR
*3 : For information about weight, refer to the weight of the standard large rotary actuator with a vane mechanism (page 1364).

Switch specifications

Item	Proximity 2-wire	Proximity 3-wire
	M2V	M3V
Applications	Dedicated for programmable controller	For programmable controller, relay, IC circuit, compact solenoid valve
Output method	-	NPN output
Power supply voltage	-	4.5 to 28 VDC
Load voltage/current	10 to 30 VDC , 5 to 30 mA	30 VDC or less, 100 mA or less
Indicator	LED (Lit when ON)	
Leakage current	1 mA or less	$10 \mu \mathrm{~A}$ or less
Weight g	$1 \mathrm{~m}: 22 \mathrm{3m}: 57 \mathrm{5m}: 93$	
Item	Reed 2-wire	
	MOV	M5V
Applications	For programmable controller, relay	Programmable controller, relay, IC circuit (without indicator lamp), serial connection
Load voltage/current	5 to 50 mA with $12 / 24 \mathrm{VDC}$, 7 to 20 mA with 110 VAC	50 mA or less with $5 / 12 / 24 \mathrm{VDC}$, 20 mA or less with 110 VAC
Indicator	LED (Lit when ON)	No indicator lamp
Leakage current	0 mA	
Weight g	$1 \mathrm{~m}: 223 \mathrm{~m}: 575 \mathrm{~m}: 93$	

[^4]Specifications
Min. oscillating time
Unit: S

Item		RV3*H50	RV3*H150	RV3*H300	RV3*H800	Vane number
Oscillating angle	90°	0.3	0.4	0.4	0.7	
	180°	0.5	0.7	0.7	1.3	Single vane
	270°	0.7	0.9	1.0	1.8	
	280°	0.7	1.0	1.0	1.8	
	90°	0.6	1.3	1.9	2.4	Double vane
	100°	0.7	1.4	2.1	2.6	

Structure

Basic structure is exactly the same as the pneumatic.

Item Port size		RV3*H50	RV3*H150	RV3*H300	RV3*H800
Orifice size	Low hydraulic specs	$\mathrm{Rc}^{1 / 8}$	$\mathrm{Rc}^{1 / 4}$	$\mathrm{Rc}^{3} / 8$	$\mathrm{Rc}^{1 / 2}$
	Pneumatic	$\varnothing 7$	$\varnothing 9.5$	$\varnothing 13$	$\varnothing 16$

Note: The double vane is the same as the pneumatic, as shaft orifice diameter cannot be changed

Volumetric capacity

Rotary actuator						
Model No.	Volumetric capacity (cm3)					Port size
	90°	100°	180°	270°	280°	
RV3SH50	51	-	51	61	62	$\mathrm{Rc}^{1 / 8}$
RV3DH50	42	43	-	-	-	
RV3SH150	146	-	146	179	185	$\mathrm{Rc}^{1 / 4}$
RV3DH150	127	123	-	-	-	
RV3SH300	244	-	283	352	365	Rc3/8
RV3DH300	244	271	-	-	-	
RV3SH800	754	-	869	1036	1046	$\mathrm{Rc}^{1 / 2}$
RV3DH800	754	754	-	-	-	

LCM
LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK*
JSK/M2
JSG
JSC3/SC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
MechndChuk
ShkAbs
FJ
SpdContr
Ending

How to order

- Large rotary actuator (low hydraulic) RV3*H

Code	Description

A Model No.
Single vane mechanism Double vane mechanism

Precautions for model No. selection
*1 : Refer to the table below for the relation of the oscillating angle and oscillating origin.
Relation of oscillating angle and oscillating origin

D Oscillating origin C Oscillating angle	40°	45°
90°		\bigcirc
100°	\bigcirc	
180°		-
270°		\bigcirc
280°	\bigcirc	

*2 : The mounting bracket (FA, LS) is included at shipment. Refer to page 1371 for dimensions.
*3 : Refer to page 1382 for shock absorber (C)
*4 : The switch cannot be installed with the oscillating angle 280 shock absorber.
[Example of model No.]
RV3SH50-90-45-M2V-D-C

Switch quantity

Model: Large rotary actuator low hydraulic

[^5]| quantity | R | With clockwise rotation detection 1 piece | - | | | | \bigcirc | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | L | With counterclockwise rotation detection 1 piece | - | | | | - | | | |
| | D | 2 | - | | | | - | | | |
| $\begin{aligned} & \text { (}) \text { Option } \\ & \text { *2, *3 } \\ & \text { *4 } \end{aligned}$ | G Option | | | | | | | | | |
| | | Nominal size | 50 | 150 | 300 | 800 | 50 | 150 | 300 | 800 |
| | Blank | No option | \bigcirc | - | - | - | - | \bigcirc | - | - |
| | FA | With flange bracket | \bigcirc | \bigcirc | | | \bigcirc | \bigcirc | | |
| | LS | With foot bracket | - | - | - | - | - | - | - | \bigcirc |
| | C | With shock absorber | \bigcirc | \bigcirc | \bigcirc | - | \bigcirc | \bigcirc | - | \bigcirc |

How to order
How to order switch unit

LCM
LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK
JSK/M2
JSG
JSC3ISC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
MechndChuk
ShkAbs
FJ
FK
SpdContr
Ending

Model: Switch unit

A Model	$:$ RV3S/D50
B Unit	$:$ With shock absorber
C Oscillating angle $: 90^{\circ}$	
(D) Switch model No.: M2V switch, lead wire length 1 m	
E Switch quantity	$:$ With clockwise rotation detection 1 piece

Dimensions

Dimensions are the same as the large rotary actuator vane mechanism/standard RV3 ${ }_{\text {D }}$ Series. Refer to page 1369.

Torque size: 50/150/300/800
Absorbed energy: 2.9/9.8/19.6/58.8 J

Specifications

Descriptions		RVC			
Size		50	150	300	800
Load range	kg/m ${ }^{2}$	0.098	0.294	0.588	1.961
Allowable abso	rbed energy J	2.9	9.8	19.6	58.8
Max. colliding ang	ular speed rad/s	14.8	13.0	11.3	9.6
Maximum energy capac	acity per minute ${ }^{+1} \mathrm{~J} / \mathrm{min}$	20	72	140	350
Ambient tempe	rature ${ }^{\circ} \mathrm{C}$	5 to 50			
Absorbing angle	(one side) rad	0.19	0.20	0.24	0.26
Weight	kg	0.24	0.42	0.78	1.62
Jaw weight kg	90°	0.07	0.15	0.36	1.0
	100°	0.07	0.14	0.35	1.0
	180°	0.07	0.15	0.37	1.0
	270°	0.05	0.11	0.28	0.8
	280°	0.05	0.10	0.25	0.7

*1: Energy capacity per minute = absorbed energy $\times n$ times/min n : No. of times lever contacts cushion piston
*2: When using with the shock absorber, set the rotary actuator's working pressure to 0.3 MPa and over

How to order
Body

RVC50

Model	Applicable rotary actuator
RVC50	RV3 $^{*} 50$
RVC150	RV3 $^{*} 150$
RVC300	RV3 $^{*} 300$
RVC800	RV3 $^{*} 800$ (without switch) ${ }^{*} 1$

*1:The shock absorber for RV3*800 (with switch) is as follows:
When the oscillating origin is 40° : RVU800-A1-C-40
For oscillating origin 45° : RVU800-A1-C-45

- Lever for shock absorber

Operational principle

When the lever installed on the rotary actuator shaft hits the piston, the generated energy is converted to pressure (hydraulic pressure) on the back of the piston.
This pressure energy becomes the thermal energy when it passes through the gap between the piston and cylinder bore and then the adjustment needle part, and is released into the air from the body surface. It will be consumed before the piston stops at the stroke end. The piston on the opposite side is pressurized by the spring force and returns to the origin.

Impact energy

1.Obtain the moment of inertia from the size of the load, and confirm that it is within the load range.
2. Check that the colliding angular speed is within the range...
$\omega_{0} \approx 1.2 \omega$
$\omega_{0}:$ Colliding angular speed ${ }^{\circ}(\mathrm{rad} / \mathrm{s})$
ω : Average angular speed ${ }^{\circ}(\mathrm{rad} / \mathrm{s})$
3. Obtain collision energy from the load and colliding angular speed.
$E_{1}=1 / 2 \mid \omega_{0}{ }^{2}$
I: Moment of inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
ω_{0} : Colliding angular speed (rad/s)
4. Obtain the energy generated by the torque of the rotary actuator. $\mathrm{E}_{2}=1 / 2 \mathrm{~T} \theta^{\prime}$
T : Torque of rotary actuator $(\mathrm{N} \cdot \mathrm{m})$
Ө': Shock absorber absorbing angle (per side) (rad)
5. Confirm that $E_{1}+E_{2}$ is less than the max. absorbed energy.
6. Obtain energy per minute from frequency.

$$
E_{m}=\left(E_{1}+E_{2}\right) x n
$$

n : No. of times lever contacts cushion piston.
Confirm that Em is less than or equal to the max. energy per minute.

Dimensions

Note: Figure shows mounted lever for 270°.

Code	A	B	C	D	E	F	G	H	J	K	L	M	N	P	Q	R	S	T	U	V	W	Y	Z	AA	BB	CC	DD	EE
RVC50	50.5	6	32	4.5	14	16	8.5	14.4	56.6	9.9	40	50	4	37	7.1	17	9.2	8	7.2	39	56	12.5	$\emptyset 45$	6.5	30	M $6 \times 12 \ell$	34	8
RVC150	56.5	7.2	36	4.5	16	18	8.5	18.4	70.7	11.3	50	62	9.5	49	8.4	25.5	11.4	10	8	60.6	80	15	$\emptyset 70$	10	30	M $8 \times 16 \mathrm{l}$	46	12
RVC300	62.5	7.2	42	4.5	16	21	12	22.5	91.9	12.7	65	87	8	61	14.2	33.2	14.1	12	12	69.2	95	22.5	$\emptyset 80$	15	30	M $10 \times 20 \mathrm{l}$	62	18

Lever for shock absorber dimensions

Oscillating angle 90° (oscillating origin 45°)

Oscillating angle 100° (oscillating origin 40°)

Material: S50C or equivalent

Code	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{P}	\mathbf{Q}
Model No .															
RVC50-90-T	23	10	16	13.7	10	1.2	2.5	10	$\mathbf{M} 5$	7	76	18	18.5	8	5
RVC150-90-T	28	12	24	19.5	12	1.2	3.9	13	M6	7.5	102	20	23	10	5
RVC300-90-T	40	18	35	30.5	14	1.2	5.4	19	M8	9	136	23.5	33.5	12	9

							Material: S50C or equivalent						
$\begin{aligned} & \text { Code } \\ & \hline \text { Model No. } \end{aligned}$	A	B	C	D	F	G	H	J	K	L	M	N	P
RVC50-10-T	23	10	16	13.5	1.2	2.5	10	M5	7	74	17.5	18.5	7
RVC150-100-T	28	12	24	19.5	1.2	4	13	M6	9	102	20	23	10
RVC300-10--T	40	18	35	30.5	1.2	5.5	19	M8	11	136	23.5	33.5	12

Material: S50C or equivalent

Code	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}	\mathbf{P}
Model No.													
RVC50 -280-T	23	13	16	13.5	1.2	5	10	M5	7	37	20	4.5	10
RVC150-280-T	28	16	24	19.5	1.2	8	13	M6	9	51	20	5	10
RVC300-280-T	40	22	35	30.5	1.2	11	19	M8	11	68	24	6.5	12.5

Material: S50C or equivalent

Code Model No	A	B	C	D	E	F	G	H	J	K	L	M	N	P	Q
RVC50 -180-T	23	10	16	13.7	10	1.2	2.5	10	M5	7	38	18	18.5	8	5
RVC150-180-T	28	12	24	19.5	12	1.2	3.9	13	M6	9	51	20	23	10	5
RVC300-180-T	40	18	35	30.5	14	1.2	5.4	19	M8	11	68	23.5	33.5	12	9

Oscillating angle 280° (oscillating origin 40°)
Material: SCM435 or equivalent

Code Model No. RVC50 -270-T	23	13	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}	\mathbf{J}	\mathbf{K}	\mathbf{L}	\mathbf{M}	\mathbf{N}
PVC150-270-T	28	16	24	19.7	10	1.2	2.6	12	1.2	4	10	M 5	7	38
RVC300-270-T	40	22	35	30.5	14	1.2	5.5	19	M 6	9	11	61	20	23

- Oscillating angle 100° (with magnet)

[^6]Dimensions

Dimensions (RVC800)

- RVC800

Lever for shock absorber dimensions (RVC800)

- Oscillating angle 90° (oscillating origin 45°)

- Oscillating angle 180° (oscillating origin 45°)

Oscillating angle 280° (oscillating origin 40°)

Oscillating angle 100° (oscillating origin 40°)

Oscillating angle 270° (oscillating origin 45°)

Oscillating angle 100° (with magnet)

Switch unit: Compact standard with valve
Specifications

Item	Proximity switch
	SR-*(-U)
Applications	For programmable controller/relay/IC circuit/compact solenoid valve
Power supply voltage	5 VDC to 30 VDC
Load voltage/current	5 to $30 \mathrm{VDC}, 200 \mathrm{~mA}$ or less
Current consumption	20 mA or less with 24 VDC
Internal voltage drop	1.5 V or less
Indicator	LED (Lit when ON)
Leakage current	$10 \mu \mathrm{~A}$ or less
Lead wire length	1 m (oil resistant vinyl cabtyre cable 4-conductor $0.2 \mathrm{~mm}^{2}$)
Shock resistance	$490 \mathrm{~m} / \mathrm{s}^{2}$
Insulation resistance	$100 \mathrm{M} \Omega$ or more with 500 V megger
Withstand voltage	No failure after 1 minute of 1,000 VAC application.
Ambient temperature	5 to $60^{\circ} \mathrm{C}$
Degree of protection	IEC standards IP67, JIS C0920 (water tight)

How to order

How to order switch unit
BOscillating angle90: 45°
(DLead wire direction: L-shaped lead wire

Switch unit configurations

Note: Use same power supply for switch and load.

Hysteresis and operational range of switch

Rotary actuator body	Operational range	Hysteresis	Hand
RV3 ${ }_{\text {d }}^{\text {- }}$ -	$15^{\circ} \pm 7^{\circ}$	3° or less	MechndiChuk
RV3 ${ }_{\text {S }}$-10			ShkAbs
RV3 ${ }_{\text {D }}$-20			FJ
The switch is fixed, and the position cannot be adjusted.			SpdContr
			Ending

Configurations

- Rotor set screw
- Rotor body

Switch unit mounting screw

- Switch unit body

[^7]Switch unit: Compact oscillating angle variable
Specifications

Item	Proximity switch	
	FR-*(-U)	
Applications	Programmable controller, relay, IC circuit	
Power supply voltage	5 VDC to 30 VDC	
Load voltage	5 VDC to 30 VDC	
Load current	5 mA to 200 mA	
Current consumption	$24 \mathrm{VDC}: 20 \mathrm{~mA}$ or less, 12 VDC: 10 mA or less, 5 VDC: 4 mA or less	
Internal voltage drop	1.5 V or less	
Indicator	LED (Lit when ON)	
Leakage current	$10 \mu \mathrm{~A}$ or less	
Lead wire length	1.0 m (oil resistant black 3-conductor cable)	
Shock resistance	490 m/s ${ }^{2}$	
Insulation resistance	$100 \mathrm{M} \Omega$ or more with 500 V megger	
Withstand voltage	No failure after 1 minute of 1,500 VAC application.	
Ambient temperature	5 to $60^{\circ} \mathrm{C}$	
Degree of protection	IEC standards IP67, JIS C0920 (water tight)	
* Mark indicates rotary actuator size. (3, 10, 20, 30)		
Hysteresis of switch and operational range		
Switch	Operational range	Hysteresis
CT-3	$23^{\circ} \pm 7^{\circ}$	Approx. 2°

How to order

- Switch unit

Model: Switch unit angle variable
U With L-shaped lead wire switch
A Model
: For RV3SA3
B Lead wire direction: L-shaped lead wire

Switch internal wiring diagram

Switch wiring procedure

Switch unit

Oscillating angle and switch mounting position

When the oscillating angle variable RV3*A Series with switch is selected, the switch unit is attached with the product. Install and adjust the angle setting stopper at the set angle, and then install the switch with the following combination.

Oscillating angle	Switch combination
30° to 186°	Combination A
187° to 270°	Combination B

Combination A

Combination B

Port position

Max. sensitivity position Max. sensitivity position

Switch unit assembly and switch adjustment method

- Mounting the switch unit body

Mount onto the rotary actuator body using the switch case mounting screws. Refer to table below for the tightening torque.

Model No.	Tightening torque ($\mathrm{N} \cdot \mathrm{m}$)
For RV3 ${ }_{\text {S }}^{\text {S }}$ A3	0.06 to 0.2
For RV3 ${ }_{\text {S }}^{\text {S }} 10$	0.1 to 0.2
For RV3 ${ }_{\text {S }}$ A20	0.2 to 0.3
For RV3 ${ }_{\text {S }}^{\text {S }}$ 30	

- Switch position adjustment

Loosen the switch adjust screw, set the switch's max. sensitivity position to the angle scale which corresponds to the rotary actuator's set angle, and then fix the switch. Tighten with a tightening torque of 40 to $50 \mathrm{~N} \cdot \mathrm{~cm}$. Since the angle scale is a guide, confirm that the LED turns ON when making the final adjustment.

- Switch replacement

Remove the switch adjusting screw and plate fixing screw, and then replace the switch. When fixing, clamp with a force of 40 to $50 \mathrm{~N} \cdot \mathrm{~cm}$. Assemble the switch following the removal steps in reverse, and always adjust the switch position.

LCM
LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK*
JSK/M2
JSG
JSC3ISC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
MechndChuk
ShkAbs
FJ
FK
SpdContr
Ending

Large switch unit: Standard/with valve/low hydraulic Specifications

Item	Proximity 2-wire	Proximity 3-wire	Reed 2-wire	
	M2V	M3V	M0V	M5V
Applications	Dedicated for programmable controller	For programmable controller,relay, IC circuit, compact solenoid valve	For programmable controller, relay	For programmable controller, relay, IC circuit (without indicator lamp), serial connection
Power supply voltage	-	4.5 to 28 VDC	-	
Load voltage/current	10 to 30 VDC , 5 to 30 mA	30 VDC or less, 100 mA or less	5 to 50 mA with $12 / 24 \mathrm{VDC}$, 7 to 20 mA with 110 VAC	50 mA or less with 5/12/24 VDC, 20 mA or less with 110 VAC
Current consumption	-	At 24 VDC 10 mA or less (when ON)		
Internal voltage drop	4 V or less	0.5 V or less	2.4 V or less	0 V
Indicator	LED (Lit when ON)			No indicator lamp
Leakage current	1 mA or less	$10 \mu \mathrm{~A}$ or less	0 mA	
Lead wire length	$1 \mathrm{~m}\left\{\begin{array}{l} \text { Oil resistant vinyl cabtyre } \\ \text { cable 2-conductor } 0.2 \mathrm{~mm}^{2} \end{array}\right\}$	$1 \mathrm{~m}\left\{\begin{array}{l} \text { Oii resistant vinyl cabtyre } \\ \text { cable } 3 \text {-conductor } 0.15 \mathrm{~mm}^{2} \end{array}\right\}$	$1 \mathrm{~m}\left\{\begin{array}{c} \text { Oil resistant vinyl cabtyre } \\ \text { cable 2-conductor } 0.2 \mathrm{~mm}^{2} \end{array}\right\}$	
Shock resistance	980 m/s ${ }^{2}$		294 m/s ${ }^{2}$	
Insulation resistance	$100 \mathrm{M} \Omega$ and over with 500 VDC megger			
Withstand voltage	No failure after 1 minute of 1,000 VAC application.			
Ambient temperature	-10 to $+60^{\circ} \mathrm{C}$			
Degree of protection	IEC Standard IP67, JIS C0920 (water-tight), oil resistance			
Weight g	$1 \mathrm{~m}: 22 \mathrm{3m}: 575 \mathrm{~m}: 93$			

How to order

Precautions for model No. selection
Note: When the type for shock absorber is selected, the shock absorber body must be purchased separately.
[Example of model No.]
RVU50-C-90-M2V-R
Model: Switch unit
B Unit
C Oscillating angle
With shock absorber
(D) Switch model No.: M2V switch, lead wire length 1 m
90°

Code	Description				
A Model					
RVU50	Applicable actuator: RV3S/D50				
RVU150	Applicable actuator: RV3S/D150				
RVU300	Applicable actuator: RV3S/D300				
RVU800	Applicable actuator: RV3S/D800				
B Unit					
Blank	Standard products				
C	With shock absorber				
C Oscillating angle					
90	90°				
100	100°				
180	180°				
270	270°				
280	280° ("C" (with shock absorber) cannot be selected.)				
D Switch model No.					
$\begin{array}{\|c\|} \hline L \text {-shaped lead } \\ \text { wire } \end{array}$				Indicator	Lead wire
		AC	DC		
M2V*	Prox.		\bullet	1-color LED	2-wire
M3V*			\bullet		3-wire
M0V*	Reed	-	\bullet		2-wire
M5V*		-	-	No indicaior lamp	
* Lead wire length					
Blank	1 m (standard)				
3	3 m (option)				
5	5 m (option)				
E Switch quantity					
R	With clockwise rotation detection 1 piece				
L	With counterclockwise rotation detection 1 piece				
D	2				

E Switch quantity : With clockwise rotation detection 1 piece

Switch unit
Switch internal circuit diagram

LCM
LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK
JSK/M2
JSG
JSC3/SC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
MechndChuk
ShkAbs
FJ
FK
SpdContr
Ending

Switch unit configurations

(Note) Shock absorber body is not included in switch unit. (Refer to page 1382 for model No. of shock absorber.)

Switch unit (With shock absorber) Configurations

With magnet

 Lever for shock absorber Lever forLever Lever
Magnet Magnet holder Hexagon socket head cap screw Pan head machine screw Spring washer Base bracket Base bracket Mounting bracket for M-switch
M-switch
installation band Mounting bracket Cross-recessed pan With shock absorber Switch mounting bracket LS bracket Holder Pan head machine screw Spring washer
M-switch

(Note)Shock absorber body is not included in switch unit. (Refer to
page 1382 for model No. of shock absorber.)

When purchasing switch other than standard switch unit, refer to pages 1395 and 1396 for repair parts kit. The rotary actuator with switch can be assembled by attaching the switch unit to the rotary actuator without switch.

Repair parts list
Repair parts list

- Compact rotary actuator

LCM
LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK*
JSK/M2
JSG
JSC3/SC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
MechndChuk
ShkAbs
FJ
FK
SpdContr
Ending

Repair parts list

LCM
LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK*
JSK/M2
JSG
JSC3/JSC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
MecthndChuk
ShkAbs
FJ
FK
SpdContr
Ending

- Large rotary actuator

No./part name	$\underbrace{\text { Part No. }}$	4	6	8	10
Model	Kit No. Product	Vane shaft	Shoe sealant	O-ring (2 pcs. each)	O-ring
RV3S50	RVS50-K			P-16	ø1.8×ø56.2
RV3S150	RVS150-K			P-22	$\varnothing 1.9 \times \varnothing 82$
RV3S300	RVS300-K			P-31	ø3xø105
RV3S800	RVS800-K			P-48	$ø 3.1 \times \varnothing 150$
RV3D50	RVD50-K			P-16	ø1.8×ø56.2
RV3D150	RVD150-K			P-22	$\varnothing 1.9 \times \varnothing 82$
RV3D300	RVD300-K			P-31	ø3xø105
RV3D800	RVD800-K			P-48	$\varnothing 3.1 \times \varnothing 150$

Repair parts kit
Repair parts kit

LCM
LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK*
JSK/M2
JSG
JSC3/SC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
MechndChuk
ShkAbs
FJ
FK
SpdContr
Ending

Part name	Kit No.	Appearance	Part name	Quantity
Lever with magnet	RVU50-A1 RVU150-A1 RVU300-A1 RVU800-A1		Lever Boss Magnet Pan head machine screw Nut	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
Base bracket	RVU50-A2 RVU150-A2 RVU300-A2 RVU800-A2 *1 RVU800-A2-D *2 *1 with 1 switch *2 In the case of the second type with two switches, refer to page 1392 for configuration with switches.		Base bracket Binding machine screw	
Switch mounting bracket	RVU50-A3 RVU150-A3 RVU300-A3	LS bracket	LS bracket Holder Pan head machine screw Spring washer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
Switch mounting bracket for shock absorber installation	RVU50-A3-C RVU150-A3-C RVU300-A3-C	LS bracket	LS bracket Holder Pan head machine screw Spring washer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
Lever for shock absorber with magnet $\left(\begin{array}{l}\text { Dimensions } \\ \text { Refer to page } 1384 \\ \text { for the type without } \\ \text { switch. }\end{array}\right)$	RVU50-90-A1-C RVU150-90-A1-C RVU300-90-A1-C RVU800-90-A1-C		Lever Magnet Magnet holder Hexagon socket head cap screw Pan head machine screw Spring washer	$\begin{aligned} & 1 \\ & 2 \\ & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$
	RVU50-100-A1-C RVU150-100-A1-C RVU300-100-A1-C RVU800-100-A1-C	Pan head machine screw		
	RVU50-180-A1-C RVU150-180-A1-C RVU300-180-A1-C RVU800-180-A1-C			

Repair parts kit

Part name	Kit No.	Appearance	Part name	Quantity
Lever for shock absorber with magnet $\left(\begin{array}{l}\text { The lever for the } \\ 280^{\circ} \text { shock } \\ \text { absorber with } \\ \text { magnet is not } \\ \text { available. }\end{array}\right)$	- RVU50-270-A1-C RVU150-270-A1-C RVU300-270-A1-C RVU800-270-A1-C fFor information about〕 types without switch and dimensions refer to page 1384.	Hexagon socket head cap screw	Lever Magnet Magnet holder Hexagon socket head cap screw Pan head machine screw Spring washer	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$
M-bracket SW	- RVU-00-A1		M-switch installation band Mounting bracket Cross-recessed pan head machine screw	1 1
Packing seal screw kit	- RVU10-B1 RVU20-B1 RVU30-B1 RVU50-B1 RVU150-B1 RVU300-B1		O-ring Gasket Cross-recessed pan head machine screw Cross-recessed pan head machine screw with captive washer	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 2 \end{aligned}$
Valve kit			Valve Cross-recessed pan head machine screw with captive washer Gasket	$\begin{aligned} & 1 \\ & 2 \\ & 1 \end{aligned}$
Sub-base	RV3U10-B3 RV3U20-B3 RV3U30-B3 RV3U50-B3 RV3U150-B3 RV3U300-B3		Sub-base	1
Angle variable switch	\square 3R :For right mounting 3L :For left mounting 3RU :L-shaped lead wire For right mounting 3LU :L-shaped lead wire For left mounting		Switch	1

Selection guide
Rotary actuator selection method
Select based on the following procedures
Step 1 Size (torque) selection
(1) Static load
(2) Resistance load
(3) Inertia load

Step 2 Oscillating time confirmation

STEP 3 Allowable energy confirmation

STEP 1 Size (torque) selection

Selection method is roughly categorized into three load.
In each case, the required torque must be calculated. If the load is a compound load, add each torque to calculate the required torque. Refer to the output table (effective torque table) and select the required torque size according to the working pressure.
(1) Static load (Ts)

When static pushing force is required for clamp, etc. Ts=FsxL

Ts: Required torque ($\mathrm{N} \cdot \mathrm{m}$)
Fs: Required force (N)
L : Length from center of rotation to pressure cone apex (m)
(2) Resistance load (TR)

When force including frictional force, gravity or other external force is applied $T_{R}=K x F_{R X L}$
T_{R} : Required torque ($\mathrm{N} \cdot \mathrm{m}$)
K : Slack coefficient
When load does not fluctuate $\mathrm{K}=2$
When load fluctuates K=5
F_{R} : Required force (N)
L : Length from center of rotation to pressure cone apex (m)
(3) Inertia load (T_{A}) When the object is rotated

$$
\mathrm{T}_{\mathrm{A}}=5 \times I \times \dot{\omega}
$$

$\dot{\omega}=\theta / t^{2}$
$\mathrm{T}_{\mathrm{A}}:$ Required torque $(\mathrm{N} \cdot \mathrm{m})$
$\mathrm{I}:$ Moment of inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
$\dot{\omega}:$ Angular acceleration $\left(\mathrm{rad} / \mathrm{s}^{2}\right)$
$\theta:$ Oscillating angle (rad)
$\mathrm{t}:$ Oscillating time (s)

Refer to the figure for moment of inertia calculation on page 1399 and calculate the moment of inertia.

Output table (effective torque)
Unit: N•m

Working pressure (MPa) Model No.		0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
Single vane	RV3S1	-	0.07	-0.10	0.12	0.15	0.18	-	-	-
	RV3S3	0.1	0.17	0.24	0.31	0.38	0.45	-	-	-
	RV3S10	0.35	0.56	0.75	0.98	1.2	1.39	-	-	-
	RV3S20	0.59	0.95	1.33	1.7	2.1	2.49	2.87	3.26	3.68
	RV3S30	1.1	1.8	2.5	3.19	4.1	4.8	5.8	6.5	7.2
	RV3S50	1.25	2.59	3.69	4.79	5.9	7	8.29	9.5	10.6
	RV3S150	5.5	8.5	11.5	15	18	21	24	27.3	30.5
	RV3S300	10.5	16.5	22.5	28.5	34.5	40.5	46	51.8	57.5
	RV3S800	37.8	59.1	81	102	123	144	166	186	205
Double vane	RV3D1	-	0.16	0.22	0.27	0.34	0.41	-	-	-
	RV3D3	0.25	0.39	0.54	0.71	0.86	1.01	-	-	-
	RV3D10	0.76	1.17	1.62	2.11	2.54	3.03	-	-	-
	RV3D20	1.4	2.22	3.06	3.88	4.17	5.53	6.38	7.17	8.07
	RV3D30	2.7	4.4	6	7.7	9.5	11.2	12.99	14.8	16.6
	RV3D50	3.3	5.79	8.29	10.4	12.8	15.1	17.6	20.1	22.5
	RV3D150	12.5	19	27	35	41.5	48	55	62	69
	RV3D300	25.5	39	54	68	83	97	110	124	137
	RV3D800	77.4	120	161	206	247	288	332	371	411

STEP 2 Oscillating time confirmation

If the oscillating time is set outside of the specified range, the actuator's operation may become unstable, or the actuator could be damaged. Always set the oscillating time within the specified oscillating time adjusting range.

Compact rotary actuator

Model No.	Oscillating angle		
	90°	180°	270°
RV3 ${ }_{\text {d }} 1$	0.03 to 0.6	0.06 to 1.2	0.09 to 1.8
RV3 ${ }_{\text {d }} 3$	0.04 to 0.8	0.08 to 1.6	0.12 to 2.4
RV3 ${ }_{\text {D }} 10$	0.045 to 0.9	0.09 to 1.8	0.135 to 2.7
RV3 ${ }_{\text {D }} 20$	0.05 to 1.0	0.10 to 2	0.15 to 3
RV3 ${ }_{\text {S }} 30$	0.07 to 0.7	0.14 to 1.4	0.21 to 2.1

(s) Large rotary actuator

Model No.	Oscillating angle				
	$\mathbf{9 0}^{\boldsymbol{}}$	$\mathbf{1 0 0}^{\boldsymbol{}}$	$\mathbf{1 8 0}^{\boldsymbol{\circ}}$	$\mathbf{2 7 0}^{\boldsymbol{\circ}}$	$\mathbf{2 8 0}^{\boldsymbol{\circ}}$
RV3 $_{\mathrm{D}}^{\mathrm{S}} 50$	0.08 to 0.8	0.09 to 0.9	0.16 to 1.6	0.24 to 2.4	0.25 to 2.5
RV3 $_{\mathrm{D}}^{\mathrm{S}} 150$	0.12 to 1.2	0.13 to 1.3	0.24 to 2.4	0.36 to 3.6	0.37 to 3.7
RV3 $_{\mathrm{S}}^{\mathrm{S}} 300$	0.16 to 1.6	0.17 to 1.7	0.32 to 3.2	0.48 to 4.8	0.49 to 4.9
RV3 $^{*} 800$	0.22 to 2.2	0.24 to 2.4	0.44 to 4.4	0.66 to 6.6	0.68 to 6.8

* Refer to page 1357 for the oscillating time of the angle variable.

STEP 3 Allowable energy confirmation

When using an inertial load, if the load's kinetic energy exceeds the allowable value at the oscillating end, the actuator could be damaged. Calculate the energy with the following formula and set it so it is within the allowable value.
If the energy is too large, absorb the energy with a shock absorber, etc.

Refer to the figure for moment of inertia calculation on page 1399 and calculate the moment of inertia.

Selection method for shock absorber for rotary

STEP 1 Allowable energy confirmation

STEP 2 Shock absorber performance confirmation

STEP 1 Allowable energy confirmation

Find the load's kinetic energy. If the value exceeds the rotary actuator with the vane mechanism's tolerable energy, install a shock absorber that complies with the rotary actuator.
Refer to STEP 3 of Rotary actuator selection method.

STEP 2 Shock absorber performance confirmation

If the load's collision energy exceeds the allowable value at the oscillating end, the shock absorber could be damaged. Calculate the energy with the following formula and set it so it is within the allowable value.
If the energy is too large, consider using a separate shock absorber with large absorption performance.

$E=E_{1}+E_{2}$
$E_{1}=(1 / 2) \times I \times \omega_{0}^{2}$
$\omega_{0} \approx 1.2 \times \omega$
$\omega=\theta / t$
$E_{2}=(1 / 2) \times T \times \theta^{\prime}$
$E_{m}=E x n$

E : Colliding energy (J)
E_{1} : Kinetic energy (J)
E_{2} : Thrust energy (J)
$\omega_{0}:$ Colliding angular speed (rad/s)
ω : Average angular speed (rad/s)
I : Moment of inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$

[^8]RV3* Series
Calculating moment of inertia
Calculating moment of inertia

$\begin{gathered} \circ \\ \stackrel{\circ}{\circ} \\ \stackrel{\rightharpoonup}{\omega} \\ \hline \end{gathered}$	Sketch	Requirements	Moment of inertia $\mathrm{lkg} \cdot \mathrm{m}^{2}$	$\begin{array}{\|r\|} \begin{array}{\|c} \text { Radius of } \\ \text { rotation } \end{array} \\ K_{1}{ }^{2} \end{array}$	Remarks
		- Diameter $d(\mathrm{~m})$ - Weight $\mathrm{M}(\mathrm{kg})$	$\mathrm{I}=\frac{\mathrm{Md}}{}{ }^{2}$	$\frac{d^{2}}{8}$	- No mounting direction - For sliding use, contact CKD.
		- Diameter$d_{1}(m)$ Weight d_{1} section $M_{1}(\mathrm{~kg})$ d_{2} section $\mathrm{M}_{2}(\mathrm{~kg})$	$\mathrm{I}=\frac{1}{8}\left(\mathrm{M}_{1} \mathrm{~d}_{1}{ }^{2}+\mathrm{M}_{2} \mathrm{~d}^{2}{ }^{2}\right)$	$\frac{\mathrm{d}_{1}{ }^{2}+\mathrm{d}_{2}{ }^{2}}{8}$	Ignore when the d_{2} section is extremely small compared to the d_{1} section
		- Bar length $R(m)$ - Weight $M(\mathrm{~kg})$	$\mathrm{I}=\frac{M \mathrm{R}^{2}}{3}$	$\frac{\mathrm{R}^{2}}{3}$	
		Bar length $R(m)$ Weight $M(\mathrm{~kg})$	$\mathrm{I}=\frac{\mathrm{MR}{ }^{2}}{12}$	$\frac{\mathrm{R}^{2}}{12}$	- No mounting direction
		- Side length $a(m)$ $b(m)$ - Weight $M(k g)$	$\mathrm{I}=\frac{\mathrm{M}}{12}\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$	$\frac{a^{2}+b^{2}}{12}$	- No mounting direction - For sliding use, contact CKD.
		Shape of concentrated load Length to center of gravity of concentrated load $\quad R_{1}$ Arm length $\quad R_{2}(\mathrm{~m})$ Concentrated load weight Arm weight	$\mathrm{I}=\mathrm{M}_{1}\left(\mathrm{R}_{1}{ }^{2}+\mathrm{K}_{1}{ }^{2}\right)+\frac{\mathrm{M}_{2} \mathrm{R}^{2}}{}{ }^{\text {a }}$	Calculate $\mathrm{K}_{1}{ }^{2}$ according to shape of concentrated load	- Mounting direction is horizontal When M_{2} is extremely small compared to M_{1}, it may be calculated as $\mathrm{M}_{2}=0$

How to convert load J_{L} to rotary actuator shaft rotation when using with gear

$\begin{aligned} & \overline{\widetilde{\pi}} \\ & \text { © } \end{aligned}$		- Gear - Rotary actuator side (tooth number) a Load side (tooth number) b - Load inertia moment $\mathrm{N} \cdot \mathrm{m}$	Load moment of inertia for the rotary actuator's shaft rotation $\mathrm{I}_{\mathrm{H}}=\left(\frac{\mathrm{a}}{\mathrm{~b}}\right)^{2} \mathrm{IL}$	When gear shape is larger, gear moment of inertia should be considered.

Selection example 1 Clamp

[Operation conditions]
Pressure $\quad 0.5 \mathrm{MPa}$

Oscillating angle 90°
Oscillating time 0.3 s
Clamp lever weight $\quad 0.1 \mathrm{~kg}$
Clamping force 20 N
Clamp position 50 mm

STEP 1 Size (torque) selection

Calculate the torque required for the static torque.

> Fs = clamping force: 20 N
> $\mathrm{R}=$ clamp position: 0.050 m
> $\mathrm{Ts}=20 \times 0.05=1.0 \mathrm{~N} \cdot \mathrm{~m}$

RV3S20-90 temporarily selected from required torque

STEP 2 Oscillating time confirmation

Make sure that the oscillating time in the working conditions is within the specified value.
If the operation time is 0.3 seconds for 90°,
it is OK since the RV3S20-90 oscillating time
adjusting range is 0.05 to 1.0 .
Proceed to the next step.

STEP 3 Allowable energy confirmation

Calculate the kinetic energy, and confirm that it is within the allowable energy value.
Calculate the moment of inertia I for the clamp lever.
[Bar (center of rotation at end)]
| $=\mathrm{MxR}^{2} / 3=0.1 \times 0.05^{2} / 3$
$=0.0000833 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
Calculate colliding angular speed $\omega 0$.
$\theta=90^{\circ}=\pi / 2(\mathrm{rad})$
$\mathrm{t}=0.3 \mathrm{~s}$
$\omega=\theta / \mathrm{t}=(\pi / 2) / 0.3=5.236(\mathrm{rad} / \mathrm{s})$
$\omega_{0}=1.2 \times \omega=6.283(\mathrm{rad} / \mathrm{s})$
Therefore, kinetic energy (E) is

[^9]The allowable energy is satisfied, so the RV3S20-90 can be selected.

Selection example 2 When there is a disc-shaped load at end of bar

[Operation conditions]	
Pressure	0.5 MPa
Oscillating angle	90°
Oscillating time	0.2 s
Bar length	60 mm
Bar weight	0.1 kg
Distance to dial plate	55 mm
Diameter of dial plate	12 mm
Dial plate weight	0.12 kg

STEP 1 Size (torque) selection

Since this is an inertial load, calculate the moment of inertia.

$$
\begin{aligned}
\mathrm{I} & =\mathrm{M}_{1}\left(\mathrm{R}_{1}{ }^{2}+\mathrm{K}_{1}{ }^{2}\right)+\mathrm{M}_{2} \mathrm{R}_{2}{ }^{2} / 3 \\
= & 0.12 \times\left(0.055^{2}+\left(0.012^{2} / 8\right)\right) \\
& +0.1 \times 0.06^{2} / 3
\end{aligned}
$$

Then calculate the angular speed $\dot{\omega}$.
From conditions
$\theta=90^{\circ}=\pi / 2(\mathrm{rad})$
$\mathrm{t}=0.2 \mathrm{~s}$
$\dot{\omega}=\theta / t^{2}=(\pi / 2) / 0.2^{2}$
$=39.27\left(\mathrm{rad} / \mathrm{s}^{2}\right)$
Thus, the inertial torque $\left(\mathrm{T}_{\mathrm{A}}\right)$ is,
$\mathrm{T}_{\mathrm{A}}=5 \times 4.85 \times 10^{-4} \times 39.27$
$=0.095(\mathrm{~N} \cdot \mathrm{~m})$
RV3S3-90 temporarily selected from inertial torque

STEP 2 Oscillating time confirmation

Make sure that the oscillating time in the working conditions is within the specified value.

If the operation time is 0.2 seconds for 90°,
it is OK since the RV3S3-90 oscillating time
adjusting range is 0.04 to 0.8 .
Proceed to the next step.

STEP 3 Allowable energy confirmation

Calculate the kinetic energy, and confirm that it is within the allowable energy value.
Calculate colliding angular speed ω_{0} according to the conditions.
$\theta=90^{\circ}=\pi / 2(\mathrm{rad})$
$\mathrm{t}=0.2 \mathrm{~s}$
$\omega=\theta / t=(\pi / 2) / 0.2$
$=7.854 \quad(\mathrm{rad} / \mathrm{s})$
$\omega_{0}=1.2 \times \omega=1.2 \times 7.854=9.425(\mathrm{rad} / \mathrm{s})$
Therefore, kinetic energy (E) is
$\begin{aligned} E & =(1 / 2) \times 4.85 \times 10^{-4} \times 9.425^{2} \times 10^{3} \\ & =21.54(\mathrm{~mJ})\end{aligned}$
The allowable energy is exceeded, so select the RV3S50 or install an external shock absorber.

CM
LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK*
JSK/M2
JSG
JSC3/SSC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2

Selection example 3 When plate-shaped load is applied with rotary shaft horizontal

[Operation conditions]	
Pressure	0.5 MPa
Oscillating angle	90°
Oscillating time	0.15 s
Plate length	100 mm
Plate weight	1.5 kg
Distance to center of gravity	50 mm
Operating frequency	$5 \mathrm{cycle} / \mathrm{min}$.

STEP 1 Size (torque) selection

This is a gravitational resistance load and inertial load, so calculate the resistance torque (TR) and inertial torque (TA).
[Resistance torque]
Since the resistance torque varies according to
the rotation, calculate the max. value.
$F_{R}=$ gravity $=1.5 \times 9.8=14.7 \mathrm{~N}$
$R=$ distance to the center of gravity: 0.050 mm
$\mathrm{T}_{\mathrm{R}}=5 \times 14.7 \times 0.05=3.675 \mathrm{~N} \cdot \mathrm{~m} \ldots(1)$
[Inertial torque]
Bar (center of rotation at end)
I $=1.5 \times 0.1^{2} / 3=0.005\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
From conditions
$\theta=90^{\circ}=\pi / 2(\mathrm{rad})$
$\mathrm{t}=0.15 \mathrm{~s}$
$\dot{\omega}=\theta / t^{2}=(\pi / 2) / 0.15 \mathrm{~s}^{2}$

$$
=69.8 \quad(\mathrm{rad} / \mathrm{s} 2)
$$

Thus, the inertial torque $\left(T_{A}\right)$ is,
$\mathrm{T}_{\mathrm{A}}=5 \times 0.005 \times 109.1$

$$
=1.745(\mathrm{~N} \cdot \mathrm{~m}) \ldots \ldots .(2)
$$

When the resistance torque and inertial torque are added,
$\mathrm{T}=\mathrm{T}_{\mathrm{R}}+\mathrm{T}_{\mathrm{A}}=3.675+1.745=5.420(\mathrm{~N} \cdot \mathrm{~m})$
RV3S150-90 temporarily selected from required torque

STEP 2 Oscillating time confirmation

Make sure that the oscillating time in the working conditions is within the specified value.
If the operation time is 0.15 seconds for 90°,
it is OK since the RV3S150-90 oscillating time adjusting range is 0.12 to 1.2.
Proceed to the next step.

STEP 3 Allowable energy confirmation

LCM
LCR

Calculate colliding angular speed according to the conditions.
$\theta=90^{\circ}=\pi / 2(\mathrm{rad})$
t $=0.15 \mathrm{~s}$
$\omega=\theta / t=(\pi / 2) / 0.15$
=10.47 (rad/s)
$\omega_{0}=1.2 \times \omega=1.2 \times 10.47=12.57(\mathrm{rad} / \mathrm{s})$
Therefore, kinetic energy (E) is
$E=(1 / 2) \times 0.005 \times 12.57^{2} \times 10^{3}$
$=395$ (mJ)
Since the allowable energy is exceeded, consider a shock absorber

Shock absorber review

Shock absorber STEP 1 Allowable energy confirmation

Since the rotary actuator's allowable energy is exceeded, confirm the shock absorber's capability in the next step.

Shock absorber STEP 2 Confirmation of shock absorber performance

Colliding angular speed

$\omega_{0}=12.6(\mathrm{rad} / \mathrm{S})$
Kinetic energy
E1 $=(1 / 2) \times 0.005 \times 12.6^{2}=0.395(\mathrm{~J})$
Torque at 0.5 MPa of RV3S150: 14.7 ($\mathrm{N} \cdot \mathrm{m}$)
Absorbing angle of shock absorber: 0.2 (rad)
Thrust energy
E2 $=(1 / 2) \times 14.7 \times 0.2=1.47(\mathrm{~J})$
Thus, the collision energy (E) is
$\mathrm{E}=\mathrm{E} 1+\mathrm{E} 2=0.395+1.47 \approx 1.86$ (J)
Energy per minute (Em)
Em $=1.86 \times 5=9.32(\mathrm{~J})$
Since all the shock absorber's specification values are satisfied, the RV3S150 with shock absorber can be selected.

LCM
LCR
LCG
LCW
LCX
STM
STG
STS/STL
STR2
UCA2
ULK*
JSK/M2
JSG
JSC3/JSC4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PCC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
Mechndidhuk
ShkAbs
FJ
FK
SpdContr
Ending

Applications

- Boring device (pitch feeding by one way clutch) Pipe bender

Stopper of parts feeder

Reverse rotation $\left(90^{\circ}\right)$ device

Washing device for holed parts

Pneumatic components

Safety Precautions

Be sure to read this section before use.
Refer to Intro Page 73 for general information of the cylinder, and to Intro Page 80 for general information of the cylinder switch.

Product-specific cautions: Rotary actuator vane RV3* Series

Design/selection

1. Common

WARNING

Do not brake or hold the product by trapping it with pneumatic pressure.
If no stopping device is provided outside the product and braking is applied partway in the stroke by sealing air in with directional control valves, the stopped position may not be maintained because of air leakage, possibly resulting in injury to the operator or damage to devices or equipment.

- Consider load fluctuation, rising/lowering operation and changes in frictional resistance for safe design. Rotary actuator operation speed may increase, causing bodily injury or damage to workpiece/device/equipment.
- Do not use the rotary actuator as a shock absorbing structure.
If abnormal pressure is applied or if air leaks, the deceleration effect will be lost, and physical or property damage may result.

■ Be sure to tighten very securely in order to prevent the fixed parts or connected sections from loosening.
Always use a secure tightening method when the operating frequency is high or when using the high rotor at places with high levels of vibration.

- Rotary actuator modification Do not modify the rotary actuator.

A CAUTION

■ Do not apply torque exceeding rated output externally to the product.
If force exceeding rated output is applied, the product could be damaged.

■ If repeatability is required for the oscillating angle, provide an external stopper to directly stop the load.
Stopping using the stopper equipped with the rotary actuator may cause the initial oscillation angle settings to change.

■ Always use the rotary actuator within the specified oscillation time range.
Use in low-speed areas less than this range will prevent smooth movement because of the stick-slip phenomenon.

■ Install a speed controller in order to control the oscillation speed of the rotary actuator.
Adjust the speed gradually from the low speed to the required speed.

Precautions for rotary actuator switch Take care when using multiple rotary actuators in proximity.
When using two or more rotary actuators with switches in proximity or if a magnetic body moves very close to the rotary actuator, the magnetic interference could cause the switch to malfunction. Rotary actuators should be designed at intervals of 40 mm or more. (Follow the allowable interval shown on each rotary actuator.)

In the mid-oscillation angle position, pay attention to the ON time of the switch.
When the switch is set at the middle position of the oscillating angle and the load is driven when the magnet is passed, if the oscillating speed is too fast, the operation time will be short when the switch turns ON and the load may not finish the required movement.
In this case,

$$
V=\frac{\text { Operational range of switch (degrees) }}{\text { Load operation time }(\mathrm{ms})} \times 1000(\text { degree } / \mathrm{s})
$$

is the oscillation speed.

Product-specific cautions

Mounting, installation and adjustment

1. Common

A WARNING

- When adjusting the angle by supplying pressure, do not rotate the device too much in advance. When adjusting while supplying pressure, the device could rotate and drop during adjustment, depending on how it is oriented, possibly resulting in operator, component, or device injury or damage.

■ Confirm that the device operates correctly before starting.
After installing the devices, connect the compressed air and power. Carry out appropriate functional inspections and leakage inspections to confirm that the devices are correctly installed and operating safety before starting the system.

- When coating

If the resin sections are painted, the resin could be adversely affected by the paint or solvent. Contact CKD to confirm whether painting is possible.
Moreover, do not remove, peel off or paint over the nameplate attached to the rotary actuator.

■ When adjusting the rotary actuator's oscillating angle with the pressure supplied, take measures to prevent the rotary actuator from rotating more than necessary.
Rotating more than is required may cause a dangerous situation.

■ When using an axial fitting, select a free-moving axial fitting.
If a stationary axial fitting is selected, the eccentricity could cause the fitting to twist and lead to defective operation, product damage, physical harm or property damage.

■ Secure sufficient space for maintenance and inspection.

■ An axial load (thrust load) on the vane shaft may cause faulty operation to occur. Therefore, do not apply such loads. If this is unavoidable, use a structure with a thrust bearing as shown in Fig.1.

Fig. 1
■ Avoid bending the end of the rotary actuator shaft or a malfunction may occur.
When unavoidable, use a mechanism transmitting only rotation as shown in Fig. 2.
When connecting the vane shaft end and load at any position in the oscillating range, use flexible couplings, etc., that will not twist off to prevent the vane shaft from breaking and bearings from wearing or seizing, etc.

Fig. 2 Radial load
Install the external stopper in a position far from the rotary shaft.
If the stopper is installed near the rotary shaft, torque generated by the product could be applied to the rotary shaft. This reaction on the stopper may damage the rotary shaft or bearings, possibly resulting in injury to the operator or damage to equipment or devices.

A CAUTION

\square When installing a load or jig, etc., on the rotary actuator vane shaft, check that load is not applied to the body as shown in Fig. 3.

OK

Fig. 3
Do not wipe items showing the model number, such as the nameplate, with organic solvents.
This may erase the display
Do not put feet directly onto shaft or devices mounted onto shaft.
Climbing directly onto the shaft could damage the bearings, etc.

If the load weight is large and oscillation is fast, the resulting shocks due to the inertial energy may exceed those that can be absorbed, possibly damaging the rotary actuator. Install a shock absorber to absorb inertia.

2. Oscillating angle variable $R V 3_{\mathrm{D}}^{\mathrm{S}} \mathrm{A}$

WARNING

- Do not loosen the angle adjustment screws outside of the adjusting range for variable oscillation angle rotary actuators.
Loosening beyond the adjusting range may cause the angle adjustment screw to fall out, potentially causing bodily injury or damage to the workpiece/device/equipment.

A CAUTION

■ Stopper
Operate the rotary actuator only after installing a stopper to serve both as a reference point stopper and angle setting device.
When the stopper is set to the oscillating origin or max. oscillating angle, if set to the positive side beyond the adjusting range, the vane could hit the internal stopper and cause damage. Always adjust the angle so that the finger stops at the external stopper.
The reference point stopper is fixed in position and cannot be moved.

■ Structure of the variable oscillating angle mechanism An external stopper is installed to the tap hole provided on the rotary actuator's body. There is a reference point stopper and angle setting stopper. The reference stopper is fixed at a set point (oscillating origin), and the angle setting stopper is fixed at a position where the required setting angle can be attained. The rotating actuator stops at the set angle when the finger attached to the shaft contacts the stopper. The position can be finely adjusted with the adjust screw provided on the stopper.

Oscillating angle settings

For non-specified setting angles (standard)
The reference point stopper is fixed and the angle setting stopper is attached at shipment. Accordingly, the angle setting stopper must be installed at a position to achieve the desired angle for use.
The installation pitch is 15°. Refer to the oscillating angle setting methods for details on installation.
If the angle setting is specified (made to order)
The reference point and angle setting stoppers are installed at the designated angle at shipment.
Before starting use, each stopper must be finely adjusted to the accurate angle by turning the fine adjust screw.

- Oscillating angle setting method

If the setting angle is an integer multiple of the stopper's installation pitch $\left(15^{\circ}\right)$
(1) Install the stopper in the appropriate position to set the angle by mounting to the relevant tapped hole. When installing the stopper, use the 30° pitch angle setting mark provided near the tap hole as a guide.

Setting angle

Model No.	Setting angle (installation pitch in multiples of 15°)
RV3 ${ }_{\text {D }}^{\text {S }}$ A3	$\begin{aligned} & 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}, 90^{\circ}, 105^{\circ}, \\ & 120^{\circ}, 135^{\circ}, 150^{\circ}, 165^{\circ}, 180^{\circ} \end{aligned}$
RV3 ${ }_{\text {S }}^{\text {S }} 10$	
RV3 ${ }_{\text {D }}^{\text {S }}$ A20	
$\mathrm{RV} 3{ }_{\mathrm{D}}^{\text {S }} \mathrm{A} 30$	$30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}, 90^{\circ}, 105^{\circ}$, $120^{\circ}, 135^{\circ}, 150^{\circ}, 165^{\circ}, 180^{\circ}$, $195^{\circ}, 210^{\circ}, 225^{\circ}, 240^{\circ}, 255^{\circ}$, 270°

Example for the 90° case

(2) Next, turn and finely adjust the fine adjust screws on the reference point stopper and angle setting stopper to set the correct angle. Always tighten the lock nut after setting.

Adjustable angle width

Stopper fine adjustment range for reference point	$\pm 3^{\circ}{ }^{* 1}$
Stopper fine adjustment range for angle setting	-9° to $+6^{\circ}$
Stopper fine adjustment range for angle setting at max. setting angle	-9° to $+3^{\circ}{ }^{* 2}$

1 : RV3DA3 is -1° to $+3^{\circ}$
2 : RV3DA3 is -9° to $+1^{\circ}$
If the setting angle is between integer multiples of the stopper's installation pitch (15°)
(1) If the setting angle is between integer multiples of the stopper's installation pitch $\left(15^{\circ}\right)$, install and fix the stopper at the tap hole shown with the arrow below.

Mount so that the reference position is the front 6° range of the stopper mounting pitch $\left(15^{\circ}\right)$ for the front mounting screw, and the back 9° range for the back mounting screw.
(2) Next, turn and finely adjust the fine adjust screw on the stopper and set the correct angle. Always tighten the lock nut after setting.

3. Shock absorber RVC

WARNING

- Precautions for shock absorber handling

Do not loosen or disassemble any parts other than the adjustment needle. Doing so may lead to oil leakage.
The hex nut at the base of the adjustment needle is not a locking nut, so do not turn it. Otherwise, oil leakage may result.
Do not use the product where the product is exposed to dust or cuttings or may come in contact with liquids such as water, oil, etc. This may lead to reduced durability or failure.

A CAUTION

Mounting the shock absorber Mounting figure

1. Use the mounting holes on the body to mount the shock absorber and install onto the square shaft of the rotary actuator.
2. Install so that the shock absorber is above the rotary actuator port. Check that the shock absorber has been mounted securely.
3. The finger of the shock absorber can now be installed, but check that the rotary actuator shaft is positioned at the
 oscillating origin. (Refer to the oscillating origin position)
4. When at the oscillating origin, the shock absorber fingers contact the shock absorber piston and will not engage. Turn the square shaft counterclockwise to where the fingers engage.
5. The shock absorber cannot be used as a stopper.

Use/maintenance

CM
CR
CG
CW
LCX
STM
STG
STS/STL
STR2
JCA2
ULK*
JSK/M2
JSG
ISC3/15C4
USSD
UFCD
USC
UB
JSB3
LMB
LML
HCM
HCA
LBC
CAC4
UCAC2
CAC-N
UCAC-N
RCS2
RCC2
PC
SHC
MCP
GLC
MFC
BBS
RRC
GRC
RV3*
NHS
HRL
LN
Hand
Chuk
NecthnoChuk
ShkAbs
FJ
FK
SpdContr Ending

1. Common

A CAUTION

- This rotary actuator is a no-lubrication actuator.

The actuator can be lubricated, but once it has been oiled, it must be maintained in an lubricated state. There are times that the lubricant applied in advance may be washed off due to oiling, stopping partway may result in malfunction. Use Class 1 turbine oil (non-additive) ISO VG32 for lubrication.
Never use other oils (spindle oil, machine oil, etc.). They could damage the seal section.
Recommended lubricants are indicated in the table below. Use this as a reference.

Manufacturer	Name
IDEMITSU KOSAN CO., LTD.	DIANA FRESIA S-32
FUJIKOSAN CO., LTD.	Fukkol Turbine 32
MITSUBISHI OIL CO., LTD.	Mitsubishi Turbine Oil 32
SHOWA SHELL SEKIYU CO., LTD.	SHELL VITREA 32
MITSUI \& CO., LTD.	Mitsui Turbine Oil 32
JAPAN ENERGY CO., LTD.	Turbine 32
JAPAN OIL. CO., LTD.	Turbine Oil 32
Cosmo Oil Co., Ltd.	Cosmo Turbine 32
EXXON MOBIL CO., LTD.	STANOL 43N
KYGNUS SEKIYU K. K.	Turbine Oil 32

2. Oscillating angle variable $R V{ }_{D}^{S} A$

\square The stopping angle is set by touching the fine adjusting screw of each stopper with the finger. Stopping angle accuracy does not include wear due to operation. If the stopping angle changes due to wear, recalibrate using the fine adjusting screws.

[^0]: *1 : Calculate the allowable energy with allowable inertia energy of the shaft of the rotary actuator as follows.
 (Allowable energy) $\geq 1 / 21 \omega^{2} \times 10^{3}$ (refer to page 1398 for details.)
 *2 : The max. operating frequency is at a supply pressure of 0.5 MPa [without load].
 *3: 5 to $60^{\circ} \mathrm{C}$ when switch is provided.
 *4 : A key is attached with the rotary actuator with keyway.
 *5 : Contact CKD for products other than standard specifications.

[^1]: Refer to page 1393 for the repair parts list.

[^2]: *1 : Calculate the allowable energy with allowable inertia energy of the shaft of the rotary actuator as follows.
 (Allowable energy) $\geq 1 / 21 \omega^{2} \times 10^{3}$ (refer to page 1398 for details.)
 *2 : The max. operating frequency is at a supply pressure of 0.5 MPa [without load].
 *3: 5 to $50^{\circ} \mathrm{C}$ when switch is provided.
 *4: A key is attached with the rotary actuator with keyway.
 *5 : Contact CKD for products other than standard specifications.

[^3]: Model No.
 Valve
 Size
 Oscillating angle
 Oscillating origin
 Valve voltage
 G Switch
 H) Switch quantity

 Option
 : RV3S
 : Single solenoid
 : 150
 : 90°
 : 45°
 : 100 VAC
 : M2V switch, lead wire length 1 m
 : With clockwise rotation detection 1 piece
 : With shock absorber

[^4]: * M0 switch can be used for 24 VAC and 48 VAC within load current range of 7 to 20 mA .
 *1 : Refer to Ending Page 1 for other switch specifications.

[^5]: (A) Model No.

 Size
 : RV3SH
 B Size :50
 C Oscillating angle
 : 90°
 D Oscillating origin
 E Switch
 F Switch quantity
 M2V switch, lead wire length 1 m
 Option
 With clockwise rotation detection 1 piece
 : With shock absorber

[^6]: Note) Model No. with options such as switch, valve, and shock absorber, etc., is listed on pages 1395 and 1396.

[^7]: * Switch unit can be installed onto rotary actuator without switch. RV3S1 with switch is not available.

[^8]: θ : Oscillating angle (rad)
 θ^{\prime} : Absorbing angle of shock absorber (rad)
 t : Oscillating time (s)
 T : Torque of rotary actuator ($\mathrm{N} \cdot \mathrm{m}$)
 E_{m} : Energy per minute ($\mathrm{J} / \mathrm{min}$)
 n : Operating frequency (time/min)

[^9]: $E=(1 / 2) \times 8.33 \times 10^{-5} \times 6.283^{2} \times 10^{3}$ $=1.64(\mathrm{~mJ})$

